
© 2022 Gerui Wang

A FULL-STACK STUDY OF BLOCKCHAINS
ON SECURITY, PERFORMANCE, AND INCENTIVE

BY

GERUI WANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Doctoral Committee:

Professor Pramod Viswanath, Chair
Professor Grigore Rosu
Assistant Professor Andrew Miller
Assistant Professor Ling Ren
Assistant Professor Kartik Nayak, Duke University

ABSTRACT

Blockchains have attracted colossal attention recently and are impacting various research
areas while encountering several stiff challenges. This thesis makes contributions to block-
chains by addressing three vital challenges in security, performance, and incentive.

First, the security challenge arises when malicious parties are beyond the threshold and
launch a successful safety attack. A novel action called forensics is designed to detect the
attackers with irrefutable proof. Moreover, the forensic support metric is mathematically
formalized and systematically characterized for Byzantine fault-tolerant (BFT) protocols
such as PBFT, HotStuff, and VABA, all of which possess strong forensic support. On the
contrary, Algorand, a player replaceable protocol, is shown to have no forensic support. A
novel protocol with both player replaceability and strong forensic support is presented to
demonstrate the feasibility of having both properties in one BFT protocol.

Next, the performance challenge refers to the consensus layer bottleneck of permissionless
blockchains. This bottleneck is removed by a novel consensus protocol called Prism, imple-
mented in clients with a flexible interface to support smart contracts. Experiments show
empirical evidence that Prism has removed the consensus layer performance bottleneck.

Finally, the incentive challenge is the phenomenon of token compounding in proof-of-stake
(PoS) blockchains which leads to unfair reward distribution and discourages parties with a
small number of tokens from joining PoS blockchains. A metric of fair reward distribution
called equitability is mathematically formalized and analyzed for extant reward distribution
mechanisms. Furthermore, a novel mechanism called the geometric reward is introduced and
proved to be the most equitable.

ii

ACKNOWLEDGMENTS

First and foremost I am extremely grateful to my advisor, Professor Pramod Viswanath
for his patient support and invaluable advice during my Ph.D. study. His knowledge and
insight have encouraged me in my academic research and daily life. I would also like to thank
the thesis committee members, Professor Grigore Rosu, Professor Andrew Miller, Professor
Ling Ren, and Professor Kartik Nayak for their support and advice on my thesis.

I would like to thank my collaborators, Professor David Tse, Professor Sreeram Kannan,
Professor Mohammad Alizadeh, Professor Giulia Fanti, Professor Kartik Nayak, Professor
Leonid Kogan, Professor Sewoong Oh, Professor Aggelos Kiayias, Dr. Vivek Bagaria, Dr.
Matthias Fitzi, Dr. Nikos Leonardos, Peiyao Sheng, Lei Yang, Shuo Wang, Xuechao Wang,
and Kathleen Ruan. It is my pleasure to work with them. I would also like to thank
Ittai Abraham, Dahlia Malkhi, Zekun Li, David Wong, Avery Ching, Shaz Qadeer, Sam
Blackshear, and Jovan Komatovic for their helpful discussions about the research topics of
this thesis.

During my Ph.D. time, countless people have helped me, including, but not limited to,
Weihao Gao, Jiaqi Mu, Hongyu Gong, Ranvir Rana, Hyeji Kim, Tarek Sakakini, Ashok
Vardhan Makkuva, Pan Li, Zhuolun Xiang, Shiyu Liang, Songze Li, Siheng Pan, Ruiyang
Chen, and Moitreya Chatterjee. I would like to express my thanks to them. I treasure
the time when I studied on the University of Illinois campus and lived in Urbana and
Champaign. I would like to thank the people there. In addition, I would like to thank
the Illinois Computer Science department and the Graduate College for creating a nice and
comfortable environment for studying and researching. I spent the last year of my Ph.D.
program studying remotely due to the pandemic, and I would like to offer my appreciation
to those who fight against the pandemic.

I would like to send my gratitude to Professor Andrew Chi-Chih Yao for creating the Yao
class. My gratitude extends to the Yao class family and Tsinghua University where I did my
undergraduate study and started academic research.

I would like to express my gratitude to my parents for their understanding and support
in the past years. I could not finish my Ph.D. study without them.

Finally, I would like to convey my special appreciation to Yingyue for her love and support.
Her elegance and passion always inspire me. Meeting her is the best thing that ever happened
to me.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Background . 1
1.2 Thesis Contributions . 2
1.3 Related Work . 4

CHAPTER 2 COMPOUNDING OF TOKEN IN PROOF-OF-STAKE BLOCKCHAINS 6
2.1 Introduction . 6
2.2 Related Work . 9
2.3 Models and Notation . 10
2.4 Equitability under Honest Behavior . 16
2.5 Strategic Behavior . 22
2.6 Conclusion . 27

CHAPTER 3 REMOVING CONSENSUS BOTTLENECK FOR PERMISSION-
LESS BLOCKCHAIN SYSTEMS . 29
3.1 Introduction . 29
3.2 Related Work . 30
3.3 Overview of Prism . 32
3.4 Design and Implementation . 35
3.5 Evaluation . 40
3.6 Conclusion . 48

CHAPTER 4 BLOCKCHAIN CONSENSUS PROTOCOL FORENSICS 50
4.1 Introduction . 50
4.2 Related Work . 53
4.3 Problem Statement and Model . 55
4.4 Forensic Support for PBFT . 57
4.5 Forensic Support for HotStuff . 66
4.6 Forensic Support for VABA . 79
4.7 Forensic Support for Algorand . 83
4.8 Forensic Support for DiemBFT . 87
4.9 Impossibility of Forensic Support for n = 2t+ 1 91
4.10 Conclusion . 93

CHAPTER 5 PLAYER REPLACEABLE BLOCKCHAINS WITH FORENSIC
SUPPORT . 95
5.1 Introduction . 95
5.2 Model and Definitions . 98

iv

5.3 Main Results: A Player Replaceable Protocol 100
5.4 An Extension: Reconfigurable Protocols . 112
5.5 Related Work . 116
5.6 Discussion . 116

REFERENCES . 118

v

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Since Bitcoin’s longest chain protocol [1] was invented in 2008, a family of distributed sys-
tems (systems that consist of multiple machines) known as blockchain systems has attracted
interest from academia and industry. A blockchain is an abstraction of a chained sequence
of data blocks containing payloads, while blockchain protocols refer to those distributed
protocols that use the concept of blockchains, and blockchain systems refer to distributed
systems that implement blockchain protocols. Most blockchain protocols achieve consen-
sus, a crucial problem in distributed computing and distributed system research. In recent
years, various new consensus protocols using or inspired by blockchains achieved the state
of the art [2, 3, 4]. Meanwhile, blockchain systems have given rise to platforms of novel
applications, such as cryptocurrency platforms (Bitcoin and Ethereum) and smart contract
platforms (Ethereum, Hyperledger, and Diem).

The quintessence of distributed systems is security. In the lens of consensus, which is the
core goal of most blockchain protocols, security means safety and liveness. Safety means
any two non-faulty machines should agree on the same output, while liveness means client
requests will eventually be output by non-faulty machines. Blockchain protocols are also
fault-tolerant, that is, they continue to guarantee the security properties despite a certain
number of machines fail. The best fault tolerance of state machine replication (the goal
of many blockchains) is 1/3 or 1/2 of Byzantine (arbitrary) faulty machines under partial
synchronous [5] or synchronous settings, respectively.

In practice, distributed systems also need to have good performance. The two significant
metrics of performance are throughput (the number of processed transactions/requests per
unit time) and latency (the time from the transaction gets to the proposal till the transaction
is output). The throughput of Ethereum, the most popular permissionless smart contract
platform currently, is around 20 tx/s (transaction per second).

Besides security and performance, blockchain systems have a distinct feature, namely de-
centralization. Decentralization refers to the absence of a primary party that controls the
system. One of the intentions of decentralization is to encourage participation from diver-
sified origins (e.g., different companies and organizations). To this end, the system should
incentivize parties to join and stay in the system, otherwise they would stop participating
or even leave the system, diminishing the degree of decentralization. For example, most
blockchain systems have a type of digital resource called tokens, and the equitable sharing

1

of tokens among participants is an important incentive aspect.
Although blockchains show excellent promise of research and application, there are a few

challenges in security, performance, and incentive.

Insecurity beyond fault tolerance threshold. Most existing works target 1/3 or 1/2
Byzantine fault tolerance (BFT) threshold, optimal under partial synchronous or synchronous
settings. As a result, there is no security guarantee when the Byzantine fraction is beyond
the threshold. For example, under partial synchrony, when 34% of machines are Byzantine
faulty, they can produce a safety violation, i.e., disagreement among honest machines, lead-
ing to catastrophic outcomes. Furthermore, the faulty machines are not accountable for it,
so there is no way to stop them after the fact.

Consensus bottleneck of throughput. Existing permissionless blockchain systems such
as Bitcoin and Ethereum are based on the longest chain protocol, the original blockchain
consensus protocol invented in 2008 [1]. It is well-known that the longest chain protocol
suffers from poor throughput and latency performance. The throughput of Bitcoin and
Ethereum is less than 10 tx/s and 20 tx/s, respectively, far less than the growing demand for
cryptocurrency and smart contract applications. Hence, the performance of these platforms
is limited by the consensus layer, and it is urgent to remove this performance bottleneck.

Inequitable token reward. For proof-of-stake (PoS) blockchain systems with tokens as
an incentive, the token reward is distributed according to the stake that parties hold. A key
issue, namely compounding, complicates this token reward mechanism. Compounding means
that whenever a party earns a reward, it adds that reward to its stake, which increases its
chances of reaping even more reward. Compounding leads to a rich-get-richer effect, causing
dramatic concentration of tokens and disincentivizing parties with a small number of tokens.

1.2 THESIS CONTRIBUTIONS

This thesis addresses the challenges mentioned above with full-stack coverage. For the
incentive challenge, Chapter 2 introduces the notion of equitability to mathematically study
token compounding in PoS blockchain generally, not specific to any individual blockchain
protocol or system. For the performance challenge, Chapter 3 implements permissionless
blockchain systems with a new consensus protocol, namely Prism [6], to remove the consensus
bottleneck. For the security challenge, Chapter 4 studies the algorithmic action of “forensics”
when the number of faults is beyond the threshold, focusing on popular consensus protocols

2

(PBFT, HotStuff, and Algorand). Next, Chapter 5 studies the forensics topic concerning
player replaceable blockchain consensus protocols. The highlights of these studies are as
follows.

1.2.1 Compounding of Token in Proof-of-Stake Blockchains

Chapter 2 studies token compounding from the perspective of the block reward function.
We define the equitability of a block reward function, which intuitively captures how much
the fraction of tokens belonging to a party can grow or shrink (under that block reward
function) compared to the initial fraction. We introduce a block reward function called the
geometric reward function, which increases geometrically over time. We show that it is the
most equitable PoS block reward function. We also study the effects of PoS pooling and
strategic mining behaviors on token compounding.

1.2.2 Removing Consensus Bottleneck for Permissionless Blockchain Systems

With a focus on smart contract platforms, Chapter 3 presents the design and implemen-
tation of Prism that provides a flexible interface for connecting with two types of smart
contract. We report experimental results from the implementation of two smart contract
virtual machines, Ethereum VM (EVM) and MoveVM, on top of Prism. The results show
that smart contract platforms built on Prism can perform without the consensus layer bot-
tleneck.

1.2.3 Blockchain Consensus Protocol Forensics

Chapter 4 formalizes the forensics of blockchain consensus protocols by the definition of
forensic protocol that aims to identify as many Byzantine faulty machines as possible and
in an as distributed manner as possible, when the number of faults exceeds the security
threshold and a security breach is mounted. Forensic support is defined as a property to
measure the capability of the best forensic protocol for a consensus protocol. It is charac-
terized for PBFT [7, 8], HotStuff [2], VABA [3] and Algorand [9], showing that there exist
minor variants of each protocol for which the forensic supports vary widely. Strong forensic
support capability is shown for DiemBFT [10] and an open-sourced forensic protocol im-
plementation on Diem client [11] is provided. Finally, an impossibility result is shown for
blockchain consensus protocols designed for the synchronous setting.

3

1.2.4 Player Replaceable Blockchain with Forensic Support

Forensics encounters an obstacle when it concerns player replaceable blockchain consensus
protocols, where protocol participants are substituted randomly every step of the protocol:
forensic protocol cannot identify malicious participants who perform incompatible actions
because participants are replaced. Chapter 5 proposes a novel player replaceable blockchain
consensus protocol to overcome this obstacle and to provide strong forensic support. Another
class of protocols called reconfigurable protocols has a similar difficulty regarding forensics.
These protocols change participants every epoch on rules that protocol designers can flexibly
specify. The idea in the player replaceable protocol is adapted to reconfigurable protocols
to enhance their forensic support.

1.3 RELATED WORK

1.3.1 Consensus Protocols

In consensus protocols, a set of machines (also known as nodes, participants, or replicas)
reach an agreement on a value or a sequence of values with the presence of faulty machines.
The problem of reaching an agreement on a single value is known as Agreement [12] and
reaching on an ever-growing, linearly ordered log of values is known as State Machine Repli-
cation (SMR) [13]. Byzantine machines are faulty machines that deviate from the protocol
arbitrarily [14], and blockchain consensus protocols focus on Byzantine fault-tolerant (BFT)
consensus protocols. The seminal work of [15] and [5] shows that it is impossible to solve con-
sensus with any crash faults deterministically under asynchrony or with one-third Byzantine
faults out of all machines under partial synchrony. PBFT [7, 8] is the first practical BFT
SMR protocol in the partial synchronous setting, with cubic communication complexity of
view change (reduced to quadratic by some variants). Following the classical approaches,
blockchain inspires new BFT protocols. HotStuff [2] is a partial synchronous SMR protocol
that enjoys a linear communication of view change and optimistic responsiveness. Tender-
mint [16] is a partial synchronous SMR protocol with a linear view change that uses peer-
to-peer gossiping. In the asynchronous setting, references [17, 18] are pioneers in solving
Byzantine consensus by using randomization. Reference [19] defines the problem Validated
Byzantine Agreement and gives a solution in asynchrony with asymptotically optimal round
number and expected cubic word communication. A recent work [3] solves it with asymptot-
ically optimal communication (quadratic) and round number. Synchronous protocols such
as [4, 20] aim at optimal latency. Algorand [9, 21] designs a committee self-selection mecha-

4

nism, and the Byzantine Agreement protocol run by the committee decides the output for all
replicas. These BFT Agreement and SMR protocols are referred as classical-style consensus
protocols. And BFT protocols usually specifically refer to classical-style consensus protocols.

Another family of SMR protocol is born from the longest chain protocol [1]. Protocols such
as Bitcoin-NG [22], GHOST [23], OHIE [24], and Conflux [25] are examples of this family.
Also, there are proof-of-stake protocols such as Ouroboros [26], Ouroboros Praos [27] and
Snow White [28]. These longest-chain-style consensus protocols differ from classical-style
consensus in that the former is often permissionless by nature whereas the latter is often
permissioned.

Many consensus protocols have a leader/proposer election mechanism that decides the
responsibility of proposing values for consensus. The vanilla leader election mechanism for
permissioned protocols is that each participant has the same chance of being elected, and the
election is either deterministic or randomized. This mechanism is common for classical-style
protocols such as PBFT and HotStuff. Another mechanism requires participants to solve a
cryptographic puzzle and use the solution as a proof of the leader election result. When the
protocol uses a computational puzzle whose solving probability is decided by computational
power, the mechanism is called proof-of-work (PoW). The longest chain protocol, Bitcoin-
NG, GHOST, OHIE, and Conflux are examples of PoW. When the protocol uses a puzzle
whose solving probability is decided according to the participants’ stake, the mechanism is
called proof-of-stake (PoS). Algorand, Ouroboros, Ouroboros Praos, and Snow White are
examples of PoS.

1.3.2 Practical Systems

In 2008, Satoshi Nakamoto invented Bitcoin [1], the first blockchain cryptocurrency sys-
tem. Ethereum [29] is a cryptocurrency system that supports smart contracts, which run
on Ethereum virtual machine (EVM). Both Bitcoin and Ethereum adopt the longest chain
protocol [1], and are permissionless blockchain systems. Diem (formerly known as Libra) is
a permissioned blockchain system that also supports smart contracts that run on MoveVM.
Hyperledger Fabric [30] proposes the execute-order-validate paradigm that is different from
standard blockchain systems, and it can choose a consensus protocol in the “order” step.

5

CHAPTER 2: COMPOUNDING OF TOKEN IN PROOF-OF-STAKE
BLOCKCHAINS

Proof-of-stake (PoS) is a promising approach for designing efficient blockchains, where
proposers are randomly chosen with probability proportional to their stakes. A primary
concern in PoS systems is the “rich getting richer” effect, whereby wealthier nodes are more
likely to get elected, and hence reap the block reward, making them even wealthier. In this
chapter, we introduce the notion of equitability which quantifies how much a proposer can
amplify its stake compared to its initial investment. Even with everyone following protocol
(i.e., honest behavior), we show that existing methods of allocating block rewards lead to
poor equitability, as does initializing systems with small stake pools and/or large rewards
relative to the stake pool. We identify a geometric reward function, which we prove is
maximally equitable over all choices of reward functions under honest behavior and bound
the deviation for strategic actions. The proofs involve the study of optimization problems
and stochastic dominances of Pólya urn processes.

We introduce this work in §2.1 and discuss related works in §2.2. In §2.3, we present our
model. In §2.4, we study equitability under honest behavior. In §2.5, we study the effects
of strategic behavior on equitability. We conclude this chapter in §2.6.

This chapter is a joint work with Giulia Fanti, Leonid Kogan, Sewoong Oh, Kathleen
Ruan, and Pramod Viswanath published as reference [31].

2.1 INTRODUCTION

A central problem in blockchain systems is that of block proposal: how to choose which
block should be appended to the global blockchain. Many blockchains use a proposal mech-
anism by which one node is randomly selected as leader (or block proposer). This leader
gets to propose the next block in exchange for a token reward — typically a combination of
transaction fees and a freshly-minted block reward which is chosen by the system designers.
Early cryptocurrencies, including Bitcoin, mainly used a leader election mechanism called
proof of work (PoW). Under PoW, all nodes execute a computational puzzle. The node
who solves the puzzle first is elected leader. PoW is quite robust to security threats, but
energy-inefficient, consuming more energy than developed nations [32].

An appealing alternative to PoW is called proof-of-stake (PoS). In PoS, proposers are
not chosen according to their computational power, but according to the stake they hold in
the cryptocurrency. For example, if Alice has 30% of the tokens, it is selected as the next
proposer with probability 0.3. Although the idea of PoS is both natural and energy-efficient,

6

the research community is still grappling with how to design a PoS system that provides
security while also incentivizing nodes to act as network validators. Part of incentivizing
validators is simply providing enough reward (in expectation) to compensate their resource
usage. However, it is also important to ensure that validators are treated fairly compared to
their peers. In other words, they cannot only be compensated adequately on average. The
variance also matters.

This observation is complicated in PoS systems by a key issue that does not arise in PoW
systems: compounding. Compounding means that whenever a node (Alice) earns a proposal
reward, that reward is added to its account, which increases its chances of being elected in
the future and reaping even more rewards. This leads to a rich-get-richer effect, causing
dramatic concentration of wealth (token).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of stake, x

0

5

10

15

20

25

D
en

si
ty

, f
(x

)

Constant Rewards, PoS
Constant Rewards, PoW
Geometric Rewards, PoS

Figure 2.1: Fractional stake distribution of a party that starts with 1/3 of the stake in a
system initialized with Bitcoin’s financial parameters. Results of geometric reward PoS and
constant reward PoW are shown after T = 1, 000 blocks.

To see this, consider what would happen if Bitcoin were a PoS system. Bitcoin started
with an initial stake pool of 50 BTC, and the block reward was fixed at 50 BTC/block
for several years. Under these conditions, suppose a party A starts with 1

3
of the stake.

Using a basic PoS model described in §2.3, A’s stake would evolve according to a standard
Pólya urn process [33], converging almost surely to a random variable with distribution
Beta(1

3
, 2
3
) [34], (blue solid line in Figure 2.1). In this example, compounding gives A a high

probability of accumulating a stake fraction near 0 or 1. This is highly undesirable because
the proposal incentive mechanism should not unduly amplify or shrink one party’s fraction
of stake. Notice that this is not caused by an adversarial or strategic behavior, but by the

7

randomness in the PoS protocol combined with compounding.
In PoW, on the other hand, the analogue would be for party A to hold 1/3 of the computa-

tional power. In that case, A’s stake after T blocks would be instead binomially distributed
with mean 50T/3 (black dashed line in Figure 2.1). Notice that the binomial (PoW) stake
distribution concentrates around 1/3 as T → ∞, so if A contributes 1/3 of stake at the
beginning, it also reaps 1/3 of the rewards in the long term.1 Among randomized protocols
that choose proposers independently at each time slot, the binomial distribution is the best
we can hope for. It represents the setting where party A wins each block with probability
equal to its initial stake. A natural question is whether we can achieve this PoW baseline
distribution in a PoS system with compounding.

We study this question from the perspective of the block reward function. Most cryp-
tocurrencies today use a constant block reward function like Bitcoin’s, which remains fixed
over a long timespan (e.g., years). We ask how a PoS system’s choice of block reward
function can affect concentration of wealth, and whether one can achieve the PoW baseline
stake distribution simply by changing the block reward function. This chapter has five main
contributions:

1. We define the equitability of a block reward function which intuitively captures how
much the fraction of total stake belonging to a node can grow or shrink (under that
block reward function), compared to the node’s initial investment.

2. We introduce an alternative block reward function called the geometric reward function
whose rewards increase geometrically over time. We show that it is the most equitable
PoS block reward function by showing that it is the unique solution to an optimization
problem on the second moment of a time-varying urn process. This optimization may
be of independent interest. We note that despite optimizing equitability, geometric
rewards do not achieve the PoW baseline stake distribution — this is the inherent price
we pay for the efficiency of PoS compared to PoW. The green histogram in Figure 2.1
illustrates the empirical, simulated stake distribution when geometric rewards are used
for 1 000 blocks, with total rewards as in the PoW example (50× 1 000 units).

3. Borrowing ideas from mining pools in PoW systems, participants in a PoS system can
form stake pools. We quantify the exact gains of stake pool formation in terms of
equitability, which proves that participating in a stake pool can significantly reduce
the compounding effect of a PoS system.

4. The effects of strategic behavior (e.g., selfish mining) on the rich-get-richer phe-
1Compounding can also happen in PoW if miners use their profits to purchase more mining equipment.

However, this feedback loop is much slower and less direct than PoS compounding, so we approximate PoW
by a system with no compounding.

8

nomenon is studied. We find that in general, compounding can exacerbate the efficacy
of strategic behavior compared to PoW systems. However, these effects can be par-
tially mitigated by carefully choosing the amount of block reward dispensed over some
time period relative to the initial stake pool size.

5. Our analyses of the equitability of various reward functions provide guidelines for
choosing system parameters — including the initial token pool size and the total
rewards to dispense in a given time interval — to ensure equitability. We show that
cryptocurrencies that start with large initial stake pools (relative to the block rewards
being disseminated) can mitigate the concentration of wealth, both for constant and
geometric reward schemes.

2.2 RELATED WORK

The compounding of wealth in PoS systems has been widely discussed in forum and
blog posts [35, 36, 37], with recent work on stake-bleeding attacks exploiting exactly this
property [38]. In this work, we quantify concentration of wealth through a new metric
called equitability, which enables us to mathematically compare PoS to PoW, and different
block reward schemes. As we discuss in §2.3, equitability is closely tied to the variance of a
block reward scheme. Thus far, researchers and practitioners have reduced variance in block
rewards through two main approaches: pooling resources (e.g., mining or stake pools) and
proposing new protocols for disseminating block rewards.

Resource pooling is common in cryptocurrencies, e.g., in mining pools [39, 40]. In PoS
systems, the analogous concept is stake pooling where nodes aggregate their stake under
a single node and block rewards are shared across the pool. In §2.4.2, we show that the
proposed geometric reward function is still the most equitable even if some parties are
forming stake pools. Recent work [41] also studies stake pools and how to incentivize their
formation through the design of reward mechanisms. Our work differs in that we aim to
optimize equitability, whereas [41] aims to incentivize the formation of a target number of
mining pools. Also, [41] does not consider the effects of compounding in PoS. A second
variance reduction approach changes the block reward allocation protocol, and our work
falls in this category. Two examples are Fruitchains [42], which spread block rewards evenly
across a sequence of block proposers, and Ouroboros [26], which rewards nodes for being
part of a block formation committee, even if they do not contribute to block proposal. Both
of these approaches were proposed in order to provide incentive-compatibility for block
proposers. They do not explicitly aim to reduce the variance of rewards, however, they
implicitly reduce variance by spreading rewards across multiple nodes, thereby preventing

9

the randomized accumulation of wealth. In our work, instead of changing how block rewards
are disseminated, we change the block reward function itself.

2.3 MODELS AND NOTATION

We provide a probabilistic model for the evolution of the stakes under a PoS system,
and introduce a measure of fairness called equitability. We begin with a model of a chain-
based proof-of-stake system with m parties: A = {A1, . . . , Am}. We assume that all parties
keep all of their stake in the proposal stake pool, which is a pool of tokens that is used to
choose the next proposer. We consider a discrete-time system, n = 1, 2, . . . , T , where each
time slot corresponds to the addition of one block to the blockchain. In reality, new blocks
may not arrive at perfectly-synchronized time intervals, but we index the system by block
arrivals. For any integer x, we use the notation [x] := {1, 2, . . . , x}. For all i ∈ [m], let
SAi

(n) denote the total stake held by party Ai in the proposal stake pool at time n. We let
S(n) =

∑m
i=1 SAi

(n) denote the total stake in the proposer stake pool at time n, and vAi
(n)

denotes the fractional stake of node Ai at time n:

vAi
(n) =

SAi
(n)

S(n)
. (2.1)

For simplicity, we normalize the initial stake pool size to S(0) = 1; this is without loss of
generality as the random process is homogeneous in scaling both the rewards and the initial
stake by a constant. Each party starts with SAi

(0) = vAi
(0) fraction of the original stake.

At each time n ∈ [T], the system chooses a proposer node W (n) ∈ A so that

W (n) =

A1 w.p. vA1(n)

. . .

Am w.p. vAm(n).

(2.2)

Upon being selected as a proposer, W (n) appends a block, or set of transactions, to the
blockchain, which is a sequential list of blocks held by all nodes in the system. As compensa-
tion for this service, W (n) receives a block reward of r(n) stake, which is immediately added
to its allocation in the proposer pool. I.e.,

SW (n)(n+ 1) = SW (n)(n) + r(n). (2.3)

10

The reward r(n) is freshly-minted, so it increases the total token pool size. We assume the
total reward dispensed in time period T is fixed, such that

∑T
n=1 r(n) = R.

2.3.1 Modeling Assumptions

Our model implicitly makes several assumptions, such as a single proposer per time slot.
Many cryptocurrencies have proposer election protocols that allow more than one proposer
to be chosen per time slot (Bitcoin [1], PoSv3 [43], Snow White [44]). If two proposers are
elected at time n, for example, then each can append its block to one block at height n− 1;
here the height of a block is its index in the blockchain. However, in these systems, only one
leader can win the block reward since only one fork of the blockchain is ultimately adopted.
Assuming the winner is chosen uniformly at random from the set of selected proposers, the
dynamics of our Markov process remain unchanged.

Some cryptocurrencies (e.g., Qtum, Particl) choose proposer(s) as a function of the time
slot and the preceding block. This does not affect our results in the honest setting (for the
same reason as above), but it does increase the efficacy of strategic behavior like grinding [45]
and selfish mining [40]. We discuss these implications in §2.5. Although we do not consider
BFT style (classical-style) PoS protocols in this chapter, such protocols provide robustness
to strategic behavior by forcing consensus on each block. They may also provide robustness
to compounding, since block rewards can be shared among many nodes.

We have also assumed in this work that users instantly re-invest rewards into the proposer
stake pool, for two reasons. (1) In PoS systems where users explicitly deposit stake, existing
implementations automatically deposit rewards back into the stake pool. For example,
the reference implementation of Casper the Friendly Finality Gadget (a PoS finalization
mechanism proposed for Ethereum) automatically re-allocates all rewards back into the
deposited stake pool [46]. (2) In other PoS systems, the stake pool is simply the set of
all stake in the system, and is not separate from the pool of tokens used for transactions
[43]. Hence as soon as a proposer earns a reward, that reward is used to calculate the next
proposer (modulo some maturity period). The user is not actively re-investing block rewards
— it just happens naturally. In practice, there may be a delay (maturity period) before the
reward is counted; we do not model this effect.

2.3.2 Block reward choices

Many cryptocurrencies use Bitcoin’s block reward schedule, which fixes the total supply of
coins at about 21 million coins, and halves the reward every 210,000 blocks (≈ 4 years) [47],

11

as illustrated by Figure 2.2. If we let Ti and Ri denote the ith block interval and the total
reward, respectively, we can take Ti = 210, 000 blocks, and Ri = 50 · 1

2i−1 · 210, 000. Several
systems have adopted similar block rewards that are constant over long periods of time (e.g.,
Ethereum [48], ZCash [49], Dash [50], Particl [51]).

0 1 2 3 4 5 0 1 2 3 4
Block Height (x 210,000 blocks)

0

5

10

15

20

25

30

35

40

45

50

Bl
oc

k
R

ew
ar

d
(B

TC
)

T1 = 210,000 blocks

T2 = 2 x 210,000 blocks

S(T1+T2) =
(50+25)(210,000)

r(T1) = 50

Figure 2.2: Bitcoin block rewards as a
function of block height. The area of
the shaded region gives the total stake
after T1 + T2 time.

0 1 2 3 4 5 0 1 2 3 4
Block Height (x 210,000 blocks)

0

50

100

150

200

250

300

350

400

450

Bl
oc

k
R

ew
ar

d
(to

ke
ns

)

S(T1+T2) = (50+25)(210,000)

r(T1) = 408

T1 = 210,000 blocks

T2 = 2 x 210,000 blocks

Figure 2.3: Geometric block rewards
as a function of block height, using
Bitcoin-based Ti and Ri values from
Figure 2.2.

In this chapter, we revisit the question of how to choose r(n). A key observation is
that r(n) must compensate nodes for the cost of proposing blocks. Many cryptocurrencies
implicitly adopt the following maxim:

On short timescales, each block should yield the same block reward.

Notice that this maxim does not specify whether the value of a block reward is measured
in tokens or in fiat. As illustrated earlier, most cryptocurrencies today measure value in
tokens. We call this approach the constant block reward:

rc(n) :=
R

T
. (2.4)

A natural alternative is to measure the block reward’s value in fiat currency which depends
on the cryptocurrency’s valuation over time interval [T]. If we assume it to be constant,
then the resulting reward function should give a constant fraction of the total stake at each
time slot. We call this the geometric reward:

rg(n) := (1 +R)
n
T − (1 +R)

n−1
T . (2.5)

Figure 2.3 shows geometric block rewards as a function of time if we use the same Ti’s and
Ri’s as in Figure 2.2, reflecting Bitcoin’s block reward schedule.

12

2.3.3 Equitability

To compare reward functions, we define a metric called equitability. Consider the stochas-
tic dynamic of the fractional stake of a party A that starts with vA(0) fraction of the initial
total stake of S(0) = 1. We denote the fractional stake at time n by vA,r(n), to make the
dependence on the reward function explicit. A straw-man metric for measuring fairness is
the expected fractional stake at time T : i.e., if A contributes 10% of the proposal stake pool
at the beginning of the time, then A should reap 10% of the total disseminated rewards
on average. This metric is poor because PoS systems elect a proposer (in Equation (2.2))
with probability proportional to the fractional stake; this ensures that each party’s expected
fractional reward is equal to its initial stake fraction, for any block reward function. That
is, ∀n ∈ [T], E[vA,r(n)] = vA(0). This comes from the law of total expectation and the fact
that

E[vA,r(n) | vA,r(n− 1) = v]

= v
v S(n− 1) + r(n− 1)

S(n)
+
(
1− v

)v S(n− 1)

S(n)
= v. (2.6)

Although all reward functions yield the same expected fractional stake, the choice of re-
ward function can nonetheless dramatically change the distribution of the final stake, as seen
in Figure 2.1. We therefore instead propose using the variance of the final fractional stake,
Var(vA,r(T)), as an equitability metric. Intuitively, smaller variance implies less uncertainty
and higher equitability:

Definition 2.1. For a positive vector ε ∈ Rm, we say a reward function r : [T]→ R+ over
T time steps is ε-equitable for ε = [ε1, . . . , εm] where εi > 0, if

Var(vAi,r(T))

vAi
(0)(1− vAi

(0))
≤ εi (2.7)

for all i ∈ [m]. For two reward functions r1 : [T] → R+ and r2 : [T] → R+ with the same
total reward,

∑T
n=1 r1(n) =

∑T
n=1 r2(n), we say r1 is more equitable than r2 for player i ∈ [m]

if

Var
(
vAi,r1(T)

)
≤ Var

(
vAi,r2(T)

)
, (2.8)

when both random processes start with the same initial fraction of vAi
(0).

The normalization in Equation (2.7) ensures the left-hand side is at most one, as we show
in Remark 2.1. It also cancels out the dependence on the initial fraction vA(0) such that the

13

left-hand side only depends on the reward function r and the time T , as shown in Lemma
2.1.

Remark 2.1. When starting with an initial fractional stake vA(0), the maximum achievable
variance is

sup
T∈Z+

sup
r

Var(vA,r(T)) = vA(0)(1− vA(0)) , (2.9)

where the supremum is taken over all positive integers T and reward function r : [T]→ R+.

Proof. We first prove the converse, Var(vA,r(T)) ≤ vA(0)(1 − vA(0)) for all T and r. This
comes from the fact that E[vA,r(T)] = vA(0), and vA,r(T) is bounded below by zero and
above by one. Maximum variance is achieved when all probability mass is concentrated on
the boundary of zero and one.

We prove the achievability, by constructing a simple constant reward function with total
reward R = T 2 increasing super-linearly in T . From the variance computation of a constant
reward function in Equation (2.34), it follows that limT→∞Var(vA,rc(T)) = vA(0)(1−vA(0)).

QED.

From the analysis of a time-dependent Pólya’s urn model, we know the variance satisfies
the following formula [52].

Lemma 2.1. Let eθn ≜ S(n)/S(n− 1), then

Var(vA,r(T)) =
(
vA,r(0)− vA,r(0)

2
)(

1− S(0)2

S(T)2

T∏
n=1

(2eθn − 1)
)
. (2.10)

Proof. Let eθn ≜ S(n)/S(n− 1) and r(n) = S(n+ 1)− S(n), then

E[vA,r(n+ 1)2|vA,r(n)] = vA,r(n)
(S(n)vA,r(n) + r(n)

S(n+ 1)

)2
+ (1− vA,r(n))

(S(n) vA,r(n)

S(n+ 1)

)2
=

(S(n)2 + 2r(n)S(n))vA,r(n)
2 + r(n)2vA,r(n)

S(n+ 1)2

= (2e−θn+1 − e−2θn+1)vA,r(n)
2 + (e−θn+1 − 1)2vA,r(n) . (2.11)

14

It follows that

E[vA,r(T)
2]− E[vA,r(T)] = (2e−θT − e−2θT)

(
E[vA,r(T − 1)2]− E[vA,r(T − 1)]

)
=
(
E[vA,r(0)

2]− E[vA,r(0)]
) T∏
n=1

(2e−θn − e−2θn) . (2.12)

Hence,

Var(vA,r(T)) = E[vA,r(T)
2]− E[vA,r(T)]

2

= E[vA,r(T)
2]− E[vA,r(T)] + E[vA,r(T)]− E[vA,r(T)]

2

= E[vA,r(T)
2]− E[vA,r(T)] + E[vA,r(0)]− E[vA,r(0)]

2

=
(
E[vA,r(0)]− E[vA,r(0)

2]
)(

1−
T∏

n=1

(2e−θn − e−2θn)
)

=
(
vA,r(0)− vA,r(0)

2
)(

1−
T∏

n=1

e−2θn

T∏
n=1

(2eθn − 1)
)

=
(
vA,r(0)− vA,r(0)

2
)(

1− S(0)2

S(T)2

T∏
n=1

(2eθn − 1)
)
. (2.13)

QED.

Although Definition 2.1 applies to an arbitrary number of parties, Lemma 2.1 implies that
it is sufficient to consider a single party’s stake. More precisely:

Remark 2.2. If reward function r : [T] → R+ over T time steps is ε-equitable for vector
ε = [ε1, . . . , εm] where εi > 0, then r is also ε̃-equitable, where

ε̃ ≜ 1 · min
i∈[m]

εi, (2.14)

with 1 denoting the vector of all ones.

As such, the remainder of this chapter will study equitability from the perspective of a
single (arbitrary) party A. We will also describe reward functions as ε-equitable as shorthand
for ε-equitable, where ε = 1 · ε. Note that even if the total reward R is fixed, equitability
can differ dramatically across reward functions. In the example of Figure 2.1, the constant
reward function is 0.5-equitable. Compared to the value 0.5, the geometric rewards of (2.5)
have a smaller chance of losing all its fractional stake (i.e. vA,rg(T) ≈ 0) or taking over the
whole stake (i.e. vA,rg(T) ≈ 1). It is 0.05-equitable in this example.

15

2.4 EQUITABILITY UNDER HONEST BEHAVIOR

In this section, we analyze the equitability of different block reward functions, assuming
that every party is honest and the PoS system is closed, so no stake is removed or added to
the proposal stake pool over a fixed time period T . Each party’s stake changes only because
of the block rewards it earns and compounding effects. We discuss the effects of strategic
behavior in §2.5.

The metric of equitability leads to a core optimization problem for PoS system designers:
given a fixed total reward R to be dispensed, how do we distribute it over the time T to
achieve the highest equitability? Perhaps surprisingly, we show that this optimization has a
simple, closed-form solution.

Theorem 2.1. For all R ∈ R+ and T ∈ Z+, the geometric reward rg defined in (2.5) is the
most equitable among functions that dispense R tokens over time T , jointly over all parties
Ai, for i ∈ [m].

Intuitively, geometric rewards optimize equitability because they dispense small rewards
in the beginning when the stake pool is small, so a single block reward cannot substantially
change the stake distribution. The rewards subsequently grow proportionally to the size of
the total stake pool, so the effect of a single block remains bounded throughout the time
period. We emphasize that the geometric reward function does not depend on the initial
stake of the party A, and hence is universally most equitable for all parties in the system
simultaneously.

Proof. Lemma 2.1 and Remark 2.2 imply that in order to show joint optimality over all
parties, it is sufficient to show that for an arbitrary party A,

Var
(
vA,rg(T)

)
≤ Var

(
vA,r(T)

)
, (2.15)

for all r ∈ RT such that
∑T

n=1 r(n) = R and r(n) ≥ 0 for all n ∈ [T]. To this end, we prove
that rg is a unique optimal solution to the following optimization problem:

minimizer∈RT Var(vA,r(T)) (2.16)
s.t.

∑
n∈[T]

r(n) = R ,

r(n) ≥ 0 , ∀n ∈ [T]. (2.17)

Using Lemma 2.1, we have an explicit expression for Var(vA,r(T)). After some affine trans-
formation and taking the logarithmic function of the objective, we get an equivalent opti-

16

mization of

maximizeθ∈RT

T∑
n=1

log(2eθn − 1) (2.18)

s.t.
∑
n∈[T]

θn = log(1 +R) ,

θn ≥ 0, ∀n ∈ [T]. (2.19)

This is a concave maximization on a (rescaled) simplex. Writing out the KKT conditions
with KKT multipliers λ and {λn}Tn=1, we get ∀n ∈ [T]:

2eθn

2eθn − 1
− λn − λ = 0 (2.20)

λn ≥ 0 (2.21)
θnλn = 0 (2.22)

Among these solutions, we show that θ∗ = ((log(1+R))/T)1 is the unique optimal solution,
where 1 is a vector of all ones. Consider a solution of the KKT conditions that is not θ∗.
Then, we can strictly improve the objective by the following operation. Let i, j ∈ [T] denote
two coordinates such that θi = 0 and θj ̸= 0. Then, we can create θ̃ by mixing θi and θj,
such that θ̃n = θn for all n ̸= i, j and θ̃i = θ̃j = (1/2)θj. We claim that θ̃ achieves a smaller
objective function as log(2eθj − 1) < 2 log(2eθj/2 − 1). This follows from Jensen’s inequality
and strict concavity of the objective function. Hence, θ∗ is the only fixed point of the KKT
conditions that cannot be improved upon.

In terms of the reward function, this translates into S(n)/S(n − 1) = (1 + R)1/T and
r(n) = (1 +R)n/T − (1 +R)(n−1)/T .

QED.

2.4.1 Composition

The geometric reward function does not only optimize equitability for a single time in-
terval. Consider a sequence (T1, R1), . . . , (Tk, Rk) of checkpoints, where Ti is increasing in i,
and Ri denotes the amount of reward to be disbursed between time Ti−1 + 1 and Ti (inclu-
sive). These checkpoints could represent target inflation rates on a monthly or yearly basis,
for instance. A natural question is how to choose a block reward function that optimizes
equitability over all the checkpoints jointly. The solution is to iteratively and independently
apply geometric rewards over each time interval, giving a block reward function like the one
shown in Figure 2.3.

17

Theorem 2.2. Consider a sequence of checkpoints {(Ti, Ri)}i∈[k]. Let R̃j :=
∑j

i=1Ri. The
most equitable reward function is

r(n) = (1 + R̃i−1)

(1 + R̃i

1 + R̃i−1

) n−Ti−1
Ti−Ti−1

−

(
1 + R̃i

1 + R̃i−1

)n−1−Ti−1
Ti−Ti−1

 (2.23)

for n ∈ [Ti−1 + 1, Ti].

When there is only one checkpoint, Theorem 2.2 simplifies to Theorem 2.1. This implies
that checkpoints can be chosen adaptively, i.e., they do not need to be fixed upfront to opti-
mize equitability. In practice, the abrupt change in geometric block rewards at a checkpoint
(Figure 2.3) may lead to miner/validator attrition [53]. Liquidity limits may slow down this
attrition, but cannot stop it [44]. One option is that we can choose the block reward func-
tion not only based on equitability, but also concerning smoothness and/or monotonicity
constraints. Another is that PoS blockchains could use geometric rewards only for the first
epoch (when compounding poses the greatest risk), and then switch to a smoother block
reward schedule of their choosing. We leave such exploration to future work.

Proof. By the same logic as the proof of Theorem 2.1, the optimization problem of interest
can be written as

maximizeθ∈RTk

Tk∑
n=1

log(2eθn − 1) (2.24)

s.t.
Ti∑

n=Ti−1+1

θn = log

(
1 + R̃i

1 + R̃i−1

)
,∀i ∈ [k] ,

θn ≥ 0,∀n ∈ [Tk] , (2.25)

where recall that θn = S(n)
S(n−1)

, and we define T0 := 0. Notice that this optimization prob-
lem is separable over the variables in different time intervals, so we can separately solve k

optimization problems, each of the form

maximizeθ∈RTi−Ti−1

Ti∑
n=Ti−1+1

log(2eθn − 1) (2.26)

s.t.
Ti∑

n=Ti−1+1

θn = log

(
1 + R̃i

1 + R̃i−1

)
,

θn ≥ 0,∀n ∈ [Ti−1 + 1, Ti] , (2.27)

18

for each i ∈ [k]. Using the same KKT conditions as in Theorem 2.1, we get that θ∗n =
1

Ti−Ti−1
log(1+R̃i

1+R̃i−1
), which in turn implies that for n ∈ [Ti−1 + 1, Ti],

S(n) = (1 + R̃i−1)

(
1 + R̃i

1 + R̃i−1

)(n−Ti−1)/(Ti−Ti−1)

(2.28)

and

r(n) = (1 + R̃i−1)

(1 + R̃i

1 + R̃i−1

) n−Ti−1
Ti−Ti−1

−

(
1 + R̃i

1 + R̃i−1

)n−1−Ti−1
Ti−Ti−1

 . (2.29)

QED.

2.4.2 Stake Pools

Participants also have the freedom to form stake pools, as explored in [39, 40, 41]. We
show that stake pools reduce the variances of the fractional stake of all pool members,
and quantify this gain. Consider a single party that owns vA(0) fraction of the stake at
time t = 0. We know from Lemma 2.1 that the variance at time T is Var(vA,r(T)) =(
vA(0) − vA(0)

2
)(

1 − S(0)2

S(T)2

∏T
n=1(2e

θn − 1)
)
. Consider a case where the same party now

participates in a stake pool, where the pool P has vP (0) of the initial stake (including the
contribution from party A), and every time the stake pool is awarded a reward for block
proposal, the reward is evenly shared among the participants of the pool according to their
stakes. The stake of party A under this pooling is denoted by vÃ(T), and it follows from
Lemma 2.1 immediately that

Var(vÃ,r(T)) =
(vA(0)
vP (0)

)2(
vP (0)− vP (0)

2
)(

1− S(0)2

S(T)2

T∏
n=1

(2eθn − 1)
)

=
1− vP (0)

vP (0)

vA(0)

1− vA(0)
Var(vA,r(T)) . (2.30)

Thus party A’s variance reduces by a factor of (vP (0)/vA(0))((1 − vA(0))/(1 − vP (0))) by
joining a stake pool of size vP (0). Note that the variance is monotonically decreasing under
stake pooling. In practice, stake pools can organically form as long as this gain in equitability
exceeds the cost of pool formation. Applying Definition 2.1 to a single party A, an ε-equitable
party A will achieve εvA(0)(1−vP (0))

vP (0)(1−vA(0))
-equitability by forming a stake pool. Further, geometric

rewards are still the most equitable reward function in the presence of stake pools. This
follows from the fact that the effect of pooling is isolated from the effect of the choice of the

19

reward function in Equation (2.30).

2.4.3 Practical parameter selection

The equitability of a system is determined by four factors: the number of block proposals
T , choice of reward function r, initial stake of a party vA(0), and the total reward R. We have
shown that geometric rewards optimize equitability. In this section, we study its dependence
on T , S(0), and R. Recall that without loss of generality, we normalized the initial stake
S(0) to be one. For general choices of S(0), the total reward R should be rescaled by 1/S(0).
The evolution of the fractional stakes is exactly the same for one system with S(0) = 2 and
R = 200 and another with S(0) = 1 and R = 100. We assume here that the system designer
can choose the total reward R, either by setting the initial stake size S(0) and/or the total
reward during T . We study how equitability trades off with the total reward R for different
choices of the reward function.

Geometric rewards. For rg(n), we have eθn = (1 + R)1/T . It follows from Lemma 2.1
that

Var(vA,rg(T))

vA(0)− vA(0)2
= 1− (2(1 +R)1/T − 1)T

(1 +R)2
, (2.31)

When R is fixed and T is increasing, we can distribute small amounts of rewards across T

and achieve vanishing variance. On the other hand, if R increases much faster than T , then
we are giving out increasing amounts of rewards per time slot and the uncertainty grows.
This result follows from the above variance formula and is made precise in the following
remark.

Remark 2.3. For a closed PoS system with a total reward R(T) chosen as a function of T
and a geometric reward function rg(n) = (1 + R(T))n/T − (1 + R(T))(n−1)/T , it is sufficient
and necessary to set R(T) by using the following formula,

R(T) =

 1

1−
√

log(1/(1−ε))
T

T

− 1

 (
1 + o(1)

)
, (2.32)

in order to ensure ε-equitability asymptotically, i.e. limT→∞
V ar(vA,rg (T))

vA(0)(1−vA(0))
= ε .

Remark 2.3 follows from substituting the choice of R(T) in the variance in Equation (2.31),

20

which gives

lim
T→∞

Var(vA,rg(T))

vA(0)− vA(0)2
= lim

T→∞
1−

(
1− log(1/(1− ε))

T

)T
(1 + o(1)).

= ε , (2.33)

The limiting variance is monotonically non-decreasing in R and non-increasing in T , as
expected from our intuition. For example, if R is fixed, one can have the initial stake S(0)

as small as exp(−
√
T/(log T)) and still achieve a vanishing variance. As the geometric

reward function achieves the smallest variance (Theorem 2.1), the above R(T) is the largest
reward that can be dispensed while achieving a desired normalized variance of ε in time T

(with initial stake of one). This scales as R(T) ≃ (1+ 1/
√
T)T ≃ e

√
T . We need more initial

stake or less total reward, if we choose to use other reward functions.

Constant rewards. In comparison, consider the constant reward function of Equation (2.4).
As eθn = (1 + nR/T)/(1 + (n− 1)R/T), it follows from Lemma 2.1 that

Var(vA,rc(T))

vA(0)− vA(0)2
= 1−

1 +R + R
T

1 +R + R
T
+ R2

T

=
R2

(T +R)(1 +R)
. (2.34)

Again, this is monotonically non-decreasing in R and non-increasing in T , as expected. The
following condition immediately follows from Equation (2.34).

Remark 2.4. For a closed PoS system with a total reward R(T) chosen as a function of T
and a constant reward function rc(n) = R(T)/T , it is sufficient and necessary to set

R(T) =
ε T

1− ε
(1 + o(1)) , (2.35)

in order to ensure ε-equitability asymptotically as T grows.

By choosing a constant reward function, the cost we pay is in the size of the total reward,
which can now only increase as O(T). Compared to R(T) ≃ e

√
T of the geometric reward,

there is a significant gap. Similarly, in terms of how small initial stake can be with fixed
total reward R, constant reward requires at least S(0) ≃ R/T .

Comparison of Rewards. For S(0) = 1 and R = 10, Figure 2.4 illustrates the normalized
variance of the two reward functions as a function of T , the total number of blocks. As

21

101 102 103

Time, T

0.0

0.2

0.4

0.6

0.8

1.0
Va

r(v
A
(T

))/
(v

A
(0

)
v A

(0
)2)

Constant Rewards
Geometric Rewards

Figure 2.4: Normalized variance after dis-
pensing R = 10 tokens over T blocks, un-
der different reward schemes.

101 102 103

Time, T

100

101

102

103

104

105

Re
wa

rd
, R

Constant Rewards
Geometric Rewards

Figure 2.5: Amount of reward that can be
dispensed over T blocks while guaranteeing
a normalized variance of at most ε = 0.1.

expected, variance decays with T and geometric rewards exhibit lower normalized variance.
Similarly, for a fixed desired (normalized) variance level of ε = 0.1, Figure 2.5 shows how
the total reward grows as a function of time T . Notice that under constant rewards, the
reward allocation grows linearly in T , whereas geometric rewards grow sub-exponentially
while still satisfying the same equitability constraint. These observations add nuance to the
ongoing conversation about how to initialize PoS cryptocurrencies. A recent lawsuit against
Ripple highlighted that the large initial stake pool could put disproportionate power in the
hands of the system designers [54]. While Ripple itself is not PoS, our results suggest that
in standard PoS systems, a large initial stake pool can actually help to ensure equitability.

2.5 STRATEGIC BEHAVIOR

In practice, proposers can behave strategically to maximize their rewards (e.g., selfish
mining [40, 55, 56]). In selfish mining, miners (proposers) do not immediately publish
blocks, but build a private withheld fork of blocks. By eventually releasing a private chain
that is longer than the main chain, the adversary can invalidate honest blocks. It gives the
adversary a greater fraction of main chain blocks and wastes honest parties’ effort. In this
section, we show that such strategic attacks are exacerbated by the compounding effects of
PoS, and geometric rewards do not provide adequate protection.

Modeling the space of strategic behaviors in PoS requires more nuance than the corre-
sponding problem in PoW [55]. We restrict ourselves in this section to two parties: A which
is adversarial, and H which is honest. Note that this restriction is without loss of generality,
as H represents the collective set of multiple honest parties as their behavior is independent

22

of how many parties are involved in H. The adversarial party A can also represent the
collective set of multiple adversarial parties, as having a single adversary A is the worst case
when all adversaries are colluding. Throughout this section, we use the terms adversarial
and strategic interchangeably.

Since A does not always publish its blocks on schedule, we distinguish the notion of a
block slot (indexed by n ∈ [T]) and wall-clock time (indexed by t ∈ [T]). It will still be
the case that each block slot n has a single leader W (n) — in practice, this is determined
by a distributed protocol — and a new block slot leader is elected at every tick of the wall
clock (i.e., at a given time t, W (n) is only defined for n ≤ t). However, due to strategic
behavior (i.e., the adversary can withhold its own blocks and override honest ones), it can
happen that no block occupies slot n, even at time t ≥ n; moreover, the occupancy of block
slot n can change over time. Thus, unlike our previous setting, if we wait T time slots, the
resulting chain may have fewer than T blocks. This is consistent with the adversarial model
considered in PoS systems (e.g., Ouroboros [26]) which elect a single leader per block slot.
Other PoS systems, like PoSv3 [43], choose an independent leader to succeed each block;
such a PoS model can lead to even worse attacks, which we do not consider in this work.

The honest party and the adversary have two different views of the blockchain, illustrated
in Figure 2.6. Both honest and adversarial parties see the main chain Bt; we let Bt(n)

denote the block (i.e., leader) of the nth slot, as perceived by the honest nodes at time t.
If a block slot n does not have an associated block at time t (either because the nth block
was withheld or overridden, or because n > t), we say that Bt(n) = ∅. Notice that due to
adversarial manipulations, it is possible for Bt(n) = ∅ and Bt−1(n) ̸= ∅, and vice versa.

In addition to the main chain, the adversary maintains arbitrarily many private side
chains, B̃1

t , . . . , B̃
s
t , where s denotes the number of side chains. The blocks in each side chain

must respect the global leader sequence W (n). An adversary can choose at any time to
publish a side chain, but we also assume that the adversary’s attacks are covert: it never
publishes a side chain that conclusively proves that it is keeping side chains. For example, if
the main chain contains a block B created by the adversary for block slot n, the adversary
will never publish a side chain containing block B̃ ̸= B, where B̃ is also associated with
block slot n.

Each side chain B̃i
t with i ∈ [s] overlaps with the honest chain in at least one block (the

genesis block), and may diverge from the main chain after some f i
t ∈ N+ (Figure 2.6). That

is,
f i
t := max{n ∈ N+ : Bt(n) = B̃i

t(n)}. (2.36)

Different side chains can also share blocks; in reality, the union of side chains is a tree.

23

However, for simplicity of notation, we consider each path from the genesis block to a leaf
of this forest as a separate side chain, instead of considering side trees. We use ℓt and ℓ̃it to
denote the chain length of Bt and B̃i

t, respectively, at time t:

ℓt = |{n ∈ [T] : Bt(n) ̸= ∅}| , and ℓ̃it = |{n ∈ [T] : B̃i
t(n) ̸= ∅}|, (2.37)

and we use the heights ht and h̃i
t to denote the block indices of the ℓtth and ℓ̃itth blocks,

respectively:

ht = max{n ∈ [T] : Bt(n) ̸= ∅} , and h̃i
t = max{n ∈ [T] : B̃i

t(n) ̸= ∅}. (2.38)

If f i
t = ht, then the adversary is building its ith side chain from the tip of the current main

chain.

Figure 2.6: In PoS, the adversary can keep arbitrarily many side chains at negligible cost,
and release (part of) a side chain whenever it chooses.

State space. The state space for the system consists of three pieces of data: (1) The
current time t ∈ [T]; (2) The main chain Bt; and (3) The set of all side chains {B̃i

t}i∈[s].
Notice in particular that the set of side chains grows exponentially in t. In practice, most
systems prevent the main chain from being overtaken by a longer side chain that branches
more than ∆ blocks prior to ht, which is called a long-range attack. Hence we can upper
bound the size of the side chain set by imposing the condition that for all i ∈ [s], ht−f i

t ≤ ∆.
However, the size of the state space is considerably larger than it is in prior work on selfish
mining in PoW [55], where the computational cost of creating a block forces the adversary
to keep a single side chain.

24

Objective. The adversary A’s goal is to maximize its fraction of the total stake in the
main chain by the end of the experiment,

vA(t) =
|{n ∈ [T] : (W (n) = A) ∧ (BT (n) ̸= ∅)}|

ℓT
. (2.39)

This objective is closely related to the metric of prior work [55], except for the finite time
duration.

Strategy space. The adversary has two primary mechanisms for achieving its objective:
choosing where to append its blocks and when to release a side chain. If the honest party
H is elected at time t, by the protocol, it always builds on the longest chain visible to it.
As we assume small enough network latency, H appends to block Bt−1(ht−1). However, if
A is elected at time t, A can append to any known block in Bt−1 ∪ {B̃i

t−1}i∈[s]. The system
must allow such a behavior for robustness reasons: even an honest proposer may not have
received a block Bt−1(ht−1) or its predecessors due to network latency.

The adversary can also choose when to release blocks. In our model, H always releases
its block immediately when elected. However, an adversarial proposer elected at time t can
choose to release its block at any time ≥ t; it can also choose not to release a given block.
Late block announcements are also tolerated because of network latency; it is impossible to
distinguish between a node that releases their blocks late and a node whose blocks arrive
late because of a poor network connection.

Notice that if A is elected at time t and chooses to withhold its block, the system advances
to time t + 1 without appending A’s block to the main chain. This means that the next
proposer W (t+ 1) is selected based on the stake ratios at time t− 1. So the adversary may
have incurred a selfish mining gain from withholding its block, but it lost the opportunity
to compound the tth block reward. This tradeoff is the main difference between our analysis
and prior work on selfish mining attacks in PoW systems.

Drawing from [40, 55], at each time slot t, the adversary has three classes of actions
available to it: match, override, and wait.

1. The adversary matches by choosing a side chain B̃i
t and releasing the first ht blocks.

This means the released chain has the same height as the honest chain. In accordance
with [40, 55], we assume that after a match, the honest chain will choose to build on
the adversarial chain with probability γ, which captures how connected the adversarial
party is to the rest of the nodes.

2. The adversary overrides by choosing a side chain B̃i
t and releasing the first h = ht+1

blocks. The released chain becomes the new honest chain.

25

3. If the adversary chooses to wait, it does not publish anything, and continues to build
on all of its side chains.

Unlike [40, 55], we do not explicitly include an action wherein the adversary adopts the
main chain. Because our model allows the adversary to keep an unbounded number of side
chains, adopting the main chain is always a suboptimal strategy; it forces the adversary to
throw away chains that could eventually overtake the main chain. The primary nuance in
the adversary’s strategy is choosing when to match or override (rather than waiting), and
which side chain to choose. Identifying an optimal mining strategy through MDP solvers as
in [55] is computationally intractable due to the substantially larger state space in this PoS
problem.

2.5.1 Strategic selfish mining

We show that adversarial gains from strategic behavior are exacerbated by compounding.
In practice, the adversary needs a strategy that balances the gains of keeping a long side
chain to potentially overtake a long main chain, with the loss in intermediate leader elections
due to withheld rewards. We propose a family of schemes called Match-Override-k (MO-k).
Under MO-k, the adversary only keeps side chains whose tip is at most k blocks ahead of
the main chain. The strategy is as follows: Every time a new honest block is generated, it is
appended to the main chain. Next, if there is a side chain that (1) is longer than ℓt, and (2)
does not already include the entire honest chain, the adversary matches the main chain. Now
there are two chains of equal length in the system; with probability γ, the newly-released side
chain becomes the new main chain. Otherwise, the previous honest main chain continues to
be the main chain, and the failed side chain is discarded. If there is no such side chain to
match, then the adversary waits. Any side chains shorter than ℓt are discarded.

Every time a new adversarial block is generated, the adversary appends it to every side
chain it is managing currently. It also starts a new side chain branching from the tip of
the main chain if there is not a side chain there already. The adversary now checks every
side chain. If there is a side chain that branches at the tip of the main chain and is at
least k blocks ahead of the main chain, the adversary overrides with this side chain, thereby
incrementing the main chain length by one. Otherwise, the main chain remains as is, and
the adversary waits.

Figure 2.7 simulates how much the adversary can gain in average fractional stake by using
MO-k strategies. As the total reward R increases, the relative fractional stake approaches
3, which is the maximum achievable value, since the expected fractional stake is normalized
by vA(0) = 1/3. The simulations were run for T = 10, 000 time steps, with S(0) = 1.

26

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 2 4 6 8 10 12 14 16 18 20

MO-4, geometric reward
MO-4, constant reward

MO-3, geometric reward
MO-3, constant reward

MO-2, geometric reward
MO-2, constant reward

S(0)+R
S(0)

E[vA(T)]
vA(0)

γ = 1.0

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 2 4 6 8 10 12 14 16 18 20

MO-4, geometric
MO-4, constant

MO-3, geometric
MO-3, constant

MO-2, geometric
MO-2, constant

S(0)+R
S(0)

E[vA(T)]
vA(0)

γ = 0.5

Figure 2.7: Average fractional stake of an adversary can increase significantly as the total
reward R increases. We fix initial fraction vA(0) = 1/3, S(0) = 1, and T = 10, 000 time
steps, and show for two values of network connectivity of the adversary γ ∈ {0.5, 1.0} and
varying total reward R.

When the adversary is well-connected, i.e., γ = 1.0, such attacks are effective even with
short side chains, such as k = 3 or 4. Further, there is no distinguishable difference in
the reward function used. On the other hand, when the adversary has 0.5 probability of
matching honest chains, γ = 0.5, it is more effective to keep longer side chains. This figure
demonstrates dramatic gains in fractional stake due to strategic behavior. A natural question
is how large these gains can be. This question is sophisticated and discussed in the longer
version of this chapter’s work [57].

2.6 CONCLUSION

This work measures the concentration of wealth (token) in PoS systems, showing that
existing block reward functions (e.g., constant) have poor equitability. We introduce a
maximally-equitable geometric reward function. The negative effects of compounding can
be further mitigated by choosing the total block rewards for each epoch to be small compared
to the initial stake pool size.

Several open questions remain. First, our results do not account for scenarios where
proposers add or remove stakes during an epoch. Another challenge, discussed in [57], is
that geometric rewards may not be desirable in practice because of the sharp changes in
block rewards between epochs. A natural solution is to impose smoothness constraints on
the class of reward functions — an interesting direction for future work. Next, our analysis
chooses the epoch length as the period between inflation checkpoints, usually a month or a
year in practice. However, the epoch length is not necessarily related to such checkpoints.

27

A smaller epoch length such as a day or an hour leads to a different analysis. It is an
interesting direction for future work to discuss which epoch length choice is more suitable
for practice. Finally, although strategic players are not specific to PoS systems, we show
that geometric rewards alone do not protect against them. Designing incentive-compatible
consensus protocols is a major open question.

28

CHAPTER 3: REMOVING CONSENSUS BOTTLENECK FOR
PERMISSIONLESS BLOCKCHAIN SYSTEMS

The performance of existing permissionless smart contract platforms such as Ethereum
is limited by the consensus layer. Prism [6] is a new proof-of-work consensus protocol that
provably achieves throughput and latency up to physical limits while retaining the strong
security guarantees of the longest chain protocol. This chapter reports experimental results
from implementations of two smart contract virtual machines, EVM and MoveVM, on top
of Prism and demonstrates that the consensus bottleneck has been removed. Code can be
found at https://github.com/wgr523/prism-smart-contracts.

We give an introduction to the work in §3.1. In §3.2 we discuss smart contract scaling
approaches in different dimensions. §3.3 gives a brief overview of Prism consensus protocol.
In §3.4, we describe our design and implementation of Prism with EVM and MoveVM.
We present evaluation results of various canonical applications in EVM and MoveVM, and
discuss their implications in §3.5. Conclusion is in §3.6.

This chapter is a joint work with Shuo Wang, Vivek Bagaria, David Tse, and Pramod
Viswanath published as reference [58].

3.1 INTRODUCTION

Existing permissionless smart contract platforms such as Ethereum is based on the longest
chain consensus protocol, the original blockchain protocol invented by Nakamoto [1]. While
maintaining high security against adversarial attacks, it is well-known that the longest chain
protocol suffers from poor throughput and latency performance. Hence, the performance of
these platforms is limited by the consensus layer.

This limitation has led to practical congestion in the network. When CryptoKitties
made its debut on Ethereum, a spike of transactions rushed into the system, far exceed-
ing Ethereum’s supported throughput. The pending transaction queue was growing quickly,
and users had to increase transaction fees to incentivize miners to add their transactions
to the chain. Decentralized Finance applications have been rapidly growing over the last
few years and as it gets more popular in the near future, the demand will continue to grow,
making the performance scaling of smart contract platforms an urgency.

Several promising efforts to scale the performance have been proposed. Almost every
major live smart contract platform such as Ethereum, Algorand, and Tron are optimizing
their existing smart contract engines to increase the throughput. A few others like Diem (led
by Facebook) and Hyperledger Fabric (led by IBM) have taken the route of permissioned

29

blockchains to obtain higher throughput. On the other hand, Ethereum foundation has taken
a sharding approach to support higher throughput. Optimistic Rollup [59], ZK-Rollup [60],
and Arbitrum [61] are other off-chain scaling solutions built on top of an existing smart
contract platform such as Ethereum. In these off-chain solutions, not every validator node
needs to keep track of the execution of the off-chain contracts, which leads to an improved
overall efficacy but at the expense of security.

Prism [6] is a recent permissionless proof-of-work (PoW) consensus protocol which natu-
rally scales the performance of the longest chain protocol. It provably achieves throughput
and latency up to computation and communication limits of the underlying physical net-
work, while retaining the strong security guarantees of the longest chain protocol. An imple-
mentation of Prism [62] scales performance significantly in a Bitcoin-like payment system,
improving the throughput of Bitcoin by about 4 orders of magnitude. The question remains
as to whether Prism can successfully support a general smart contract platform and remove
the consensus bottleneck. Indeed, not every blockchain consensus protocol is extensible to a
smart contract platform (e.g., Spectre [63]) and scalably integrating consensus with smart
contract platforms is nontrivial.

This chapter demonstrates that Prism can support general smart contract platforms and
provide a very high level of performance. We present the design and implementation of
Prism that provides a flexible interface for connecting with two common smart contract
virtual machines. We report experimental results from implementation of two smart contract
virtual machines, Ethereum VM (EVM) and MoveVM, on top of Prism. Figure 3.1a shows
throughput results for running several canonical smart contract applications on EVM on
Prism, while Figure 3.1b shows analogous results for MoveVM on Prism. As can be seen, the
throughputs are very close to that of virtual machine execution only without consensus, and
much larger than the throughput using the longest chain protocol. Thus, we conclude that
smart contract platforms built on Prism can perform without the consensus layer bottleneck.

3.2 RELATED WORK

The throughput of blockchains with smart contract platform can be increased at three
different points on the blockchain stack. The first approach is to improve the execution speed
of the virtual machine engine. A basic approach is to optimize the execution of individual
op codes (followed in EVM clients such as Parity Ethereum and Geth) or by designing a
new set of op codes from first principles (followed by Diem to arrive at MoveVM [64]). A
more involved approach is to execute smart contracts in parallel similar to the modern design
of databases such as MySql [65] and Postgres [66]. The first technique is to run multiple

30

10

100

1 k

10 k

100 k

NativePayment

DoNothing

CPUHeavy

IOHeavy

ERC20

CryptoKitties

T
x
/
s

Ethereum
EVM Prism

EVM Executor Only

(a) EVM Prism

10

100

1 k

10 k

100 k

NativePayment

DoNothing

CPUHeavy

IOHeavy

ERC20

T
x
/
s

MoveVM Prism
MoveVM Executor Only

(b) MoveVM Prism

Figure 3.1: Throughput of Prism clients; experimented with 100 nodes on several applica-
tions: Native Payment, Do Nothing, and ERC20 are lightweight applications whereas others
are heavyweight ones. In MoveVM, Native Payment is essentially the same as ERC20. The
reader is cautioned against comparing performance across the two VM’s, as EVM is a ma-
ture technology while MoveVM is current under active development. Rather, the main point
of obtaining results in two VM’s is to demonstrate the flexibility of Prism. Moreover, we
did not compare with the the performance of MoveVM on Diem consensus because it is
permissioned while Prism is permissionless.

smart contracts in parallel where smart contracts acquire locks on a data before editing to
ensure no data is simultaneously edited by more than a single smart contract. It is used
in reference [67] with a 33% improvement in throughput. An alternative approach uses
optimistic concurrency with rollbacks, where multiple smart contracts execute in parallel
(without locks). When two smart contracts running in parallel try to edit the same data,
one of them is rolled backed and executed later. This approach is explored in references [68,
69, 70, 71] where 3-4x improvement in throughput is observed. Although the improvement
in throughput is significant in these methods, it exposes the blockchain to new kinds of
adversarial attacks. Moreover these methods don’t address metering which is a critical
component to align incentives.

Even though the current VMs have low throughput, the current bottleneck in today’s
blockchain platform is the consensus protocol itself. The longest chain protocol and its cur-
rent variants do not saturate the performance of the underlying VMs (refer Figure 3.1 for
details). Therefore, the second approach of designing high throughput consensus protocols
is a natural avenue to scale smart contract platforms. One method is to move from per-
missionless to permissioned consensus protocols which can support high throughput, and
Facebook’s Diem [72] and IBM’s Hyperledger Fabric [30] take this path. Diem has chosen a
recent high-performing Byzantine fault tolerance (BFT) consensus protocol (HotStuff [73]);
Hyperledger Fabric [30] proposes the execute-order-validate paradigm in order to attain both

31

performance and extensibility, where (1) participants execute transactions and collect en-
dorsements for the executions, (2) responsible participants order these executed transactions
through a consensus protocol, and (3) transactions are validated by all participants. How-
ever, these approaches sacrifice the very important characteristic of being permissionless. In
this chapter we take the approach of designing and implementing a high throughput per-
missionless consensus protocol, Prism, which achieves high throughput. Protocols such as
OHIE [24], Algorand [21], and Bitcoin-ng [22] take a similar route. To the best of our knowl-
edge, there do not exist implementations running smart contracts on top of these protocols;
hence we have not been able to make a direct comparison with Prism’s performance.

The third approach is Plasma and sharding. In 2015, Poon and Buterin proposed Plasma
[74], an off-chain scaling solution. At a high level, Plasma is a network of secondary chains,
and each one of them is designed to serve different needs. These chains interact not only
among each other, but also with the main chain (on a need basis) to resolve conflicts using
fraud proofs. This approach has weaker security properties and, in particular, susceptible
to the “mass exit” attack. To overcome some of these security vulnerabilities, Ethereum
2.0 [75], near [76], polkadot [77], and Trifecta take the sharding approach which horizontally
scales the throughput by running multiple instances of blockchains and pooling them to
obtain high security. Even though this approach has better security than plasma, overall it
has lower security compared to the pure consensus protocols in the previous paragraph.

3.3 OVERVIEW OF PRISM

The selection of a main chain in a blockchain protocol can be viewed as electing a leader
block among all the blocks at each level of the blocktree. In this light, the blocks in the longest
chain protocol can be viewed as serving three distinct roles: they stand for election to be
leaders; they add transactions to the main chain; they vote for ancestor blocks through parent
link relationships. The latency and throughput limitations of the longest chain protocol are
due to the coupling of the roles carried by the blocks. Prism removes these limitations by
factorizing the blocks into three types of blocks: proposer blocks, transaction blocks, and
voter blocks (Figure 3.2). Each block mined by a miner is randomly sortitioned into one of
the three types of blocks, and if it is a voter block, it will be further sortitioned into one of
the voter trees.

The proposer blocktree anchors the Prism blockchain. Each proposer block contains a
list of reference links to transaction blocks, which contains transactions, as well as a single
reference to a parent proposer block. Honest nodes mine proposer blocks on the longest chain
in the proposer tree, but the longest chain does not determine the final confirmed sequence

32

L

L

L

L

Proposer block

Transaction block

Leader blockL

Voter block

Parent Link

Reference Link

Chain 1 Chain 2 Chain 𝑚

Figure 3.2: Prism: Factorizing the blocks into three types of blocks: proposer blocks, transaction
blocks and voter blocks.of proposer blocks, known as the leader sequence. We define the level of a proposer block
as its distance from the genesis proposer block, and the height of the proposer tree as the
maximum level that contains any proposer blocks. The leader sequence of proposer blocks
contains one block at every level up to the height of the proposer tree, and is determined by
the voter chains.

There are m voter chains, where m≫ 1 is a fixed parameter chosen by the system designer.
For example, we choose m = 1000 in our experiments. The ith voter chain is comprised
of voter blocks that are mined on the longest chain of the ith voter trees. A voter block
votes for a proposer block by containing a reference link to that proposer block, with the
requirements that: 1) a vote is valid only if the voter block is in the longest chain of its voter
tree; 2) each voter chain votes for one and only one proposer block at each level. The leader
block at each level is the one which has the highest number of votes among all the proposer
blocks at the same level (tie broken by hash of the proposer blocks.) The elected leader
blocks then provide a unique ordering of the transaction blocks to form the final confirmed
ledger.

By decoupling the various types of blocks, Prism can provably achieve low latency and
high throughput while maintaining high security.

3.3.1 Latency

The votes from the voter trees secure each leader proposer block, because changing an
elected leader requires reversing enough votes to give them to a different proposer block in
that level. Each vote is in turn secured by the longest chain protocol in its voter tree. If the
adversary has less than 50% hash power, and the mining rate in each of the voter trees is kept
small to minimize forking, then the consistency and liveness of each voter tree guarantee the

33

consistency and liveness of the ledger maintained by the leader proposer blocks. However,
this would appear to require a long latency to wait for each voter block to get sufficiently
deep in its chain. What is interesting is that when there are many voter chains, the same
guarantee can be achieved without requiring each and every vote to have a very low reversal
probability, thus drastically improving over the latency of the longest chain protocol.

Theorem 3.1 (Latency, Thm. 4.8 [6]). For an adversary with β < 50% of hash power,
network propagation delay D, Prism with m chains confirms honest1 transactions at reversal
probability ϵ guarantee with latency upper bounded by

Dc1(β) +
Dc2(β)

m
log

1

ϵ
seconds, (3.1)

where c1(β) and c2(β) are β dependent constants.

For large number of voter chains m, the first term dominates the above equation and
therefore Prism achieves near optimal latency, i.e. proportional to the propagation delay D

and independent of the reversal probability.

3.3.2 Throughput

To keep Prism secure, the mining rate and the size of the voter blocks have to be chosen
in such a way that each voter chain has little forking. The mining rate and the size of the
proposer blocks have also to be chosen to the effect that there is very little forking in the
proposer tree. Otherwise, the adversary can propose a block at each level, breaking the
liveness of the system. Hence, the throughput of Prism would be as low as the longest chain
protocol if transactions were carried by the proposer blocks directly.

To decouple security from throughput, transactions are instead carried by separate trans-
action blocks. Each proposer block when it is mined refers to the transaction blocks that
have not been referred to by previous proposer blocks. This design allows throughput to
be increased by increasing the mining rate of the transaction blocks, without affecting the
security of the system. The throughput is only limited by the computing or communication
bandwidth limit C of each node, thus potentially achieving 100% utilization.

Theorem 3.2 (Throughput, Thm. 4.4 [6]). For an adversary with β < 50% fraction of
hash power and network capacity C, Prism can achieve (1− β)C throughput and maintain
liveness in the ledger.

1Honest transactions are ones which have no conflicting double-spent transactions broadcast in public.

34

3.4 DESIGN AND IMPLEMENTATION

We implement a Prism full-node client with VMs in around 10,000 lines of Rust code. In
this section, we describe the architecture of the client and highlight several design choices
that are tailored to Prism consensus.

3.4.1 Architecture

Communication
with other clients

Pending
Transactions

Blocktree
Manager Miner

Ledger
Manager

Virtual Machine Environment

State Database

Prism Consensus

VM Executor

Confirmed Blocks

Prism Client

Figure 3.3: Architecture of the Prism client. In the peer-to-peer network, each node is
running a Prism full-node client.

Our implementation of Prism full-node client consists of two modules, Prism Consensus
module and Virtual Machine Executor (VM Executor) module. Prism Consensus module is
in charge of exchanging blocks with peers, following Prism consensus to confirm blocks, and
push confirmed blocks to VM Executor. VM Executor maintains the state of the confirmed
ledger, i.e., the state that results from executing transactions up to the last confirmed block.

35

When VM Executor receives new confirmed blocks from Prism Consensus, it retrieves trans-
actions from those blocks and updates the state accordingly. This architecture is illustrated
in Figure 3.3.

Prism Consensus module can be divided into the following three parts:
1. Blocktree Manager, which maintains the client’s view of the blockchain, and exchanges

blocks with peers;
2. Ledger Manager, which confirms blocks by following Prism protocol, and pushes con-

firmed blocks to VM Executor;
3. Miner, which contains a transaction memory pool and assembles new blocks.
Blocktree Manager consists of an event loop and a thread pool. The event loop keeps

listening to events such as sending/receiving blocks, and assigns a thread from the thread
pool to process it. When the client receives a new block from a peer, Blocktree Manager
checks its proof of work, and stores the block locally. After that, it relays the block to peers
in case they have not received it. It then checks data availability, i.e., whether all the blocks
referred by reference links in this block have been received. If not, it buffers the block and
defers further processing until data availability is satisfied. After data availability is satisfied,
Blocktree Manager checks sortition and transaction signatures. Finally the block is inserted
into Prism blocktree.

Ledger Manager is a busy-waiting loop that queries Blocktree Manager periodically to
see whether there are new confirmed blocks, following Prism’s confirmation rule. If there are,
it will retrieve the blocks from local storage and push them to VM Executor via a message-
passing channel. The choice of the busy-waiting loop suits the high transaction workload
since the busy-waiting overhead is negligible when it takes a long time to retrieve a large
number of blocks and push them to VM Executor. Both Blocktree and Ledger Managers
use RocksDB as the storage backend [78, 79] thanks to its high performance and ease of
integration.

Miner module maintains a memory pool that collects pending transactions and assem-
bles them into new blocks. The Miner module does not actually try to solve the PoW hash
inequality. Instead, it simulates the mining process via a Poisson process (of fixed growth
rate, corresponding to the mining difficulty level) which is statistically independent across
different nodes (matching the distributed nature of PoW mining). When a new block is
mined, it is pushed to Blocktree Manager which will broadcast the block to peers. Trans-
actions carried by assembled or received blocks are checked for duplication in the memory
pool, with duplicates being purged.

VM Executor is in charge of maintaining the state database, i.e., the persistent storage
for the state of the confirmed ledger. State database stores account information such as

36

address and balance, and manage data in a hash accumulator (Merkle Patricia tree is used
in Ethereum and sparse Merkle tree is used in Diem). VM Executor receives confirmed
blocks from Ledger Manager, retrieves transactions from those blocks, and executes them
sequentially. To execute a transaction, VM Executor first initializes a virtual machine envi-
ronment, such as program counter, stack, and memory, and then it executes the instructions
coded inside the transaction and/or the smart contract. During the execution, it may in-
teract with the state database. The execution result of a transaction will be a success or
a failure, depending on whether the transaction is valid or not. Invalid transactions with
failure results should be sanitized out of the confirmed ledger and have no effect on the state.
Valid transactions will update the state according to the execution result. After executing all
transactions in a confirmed block, VM Executor commits the updates to the state database.

We ported the VM Executors from two open source projects, Open Ethereum [80] (pop-
ularly known as Parity Ethereum) and Diem [72], and adapt the structure of transactions,
the hash function, and the signature schemes to these projects respectively. The port only
required us to add or modify less than 20 lines of code (LOC) for Open Ethereum and less
than 160 LOC for Diem in their Rust language codebases. In addition, 2 LOC were modified
in Move language for Diem codebase. The two VM Executors run single threads, with no
parallel transaction execution capability. We will use the name of virtual machines, EVM
and MoveVM, to refer them hereafter.

3.4.2 Highlights

The key design and implementation challenge is in translating the high throughput, low
latency and high confirmation probability that Prism provides on raw block and transaction
level into an application layer programming construct via the virtual machine intermediaries.
On the one hand, the client must process blocks and transactions at a rate much higher
than most traditional blockchains. On the other hand, low latency and high confirmation
probability enables confirmation of the ledger, which the implementation can benefit from.
Here, we highlight several implementation choices that are tailored for Prism consensus and
distinguish our implementation from traditional blockchains.

Confirmation. In Ethereum and other longest chain protocols, the state of the longest
chain tip is used for transaction validation. However, blocks in longest chain may be switched
due to honest or adversarial forking blocks. To smoothly update state when the longest chain
switch happens, Ethereum’s implementation keeps a short-term journal containing actions
in recent forking blocks. It leads to the lower efficiency of the state management which is a

37

particular impediment due to the high mining rate (and high throughput) of Prism. In our
design, we find it relevant to only maintain the state of the last confirmed block because of
two reasons: (1) Prism guarantees confirmation with overwhelmingly high probability (e.g.,
1− 10−9), so confirmed blocks are not likely to be deconfirmed. (2) Prism does not validate
transactions before including them in blocks, so it is unnecessary to maintain the state of
the unconfirmed latest proposer block. It not only makes maintenance more efficient, but
also enables the integration with VM of BFT consensus such as MoveVM.

In traditional blockchains (Bitcoin and Ethereum), blocks are mined at a relatively low rate
and a newly mined block is likely to change the longest chain. Hence in their implementation,
they update state when they receive a new block. In Prism, blocks are mined at a high mining
rate; confirming blocks and updating state upon receipt of a new block would be onerous –
we make a design choice to update the state only when blocks are confirmed and to conduct
the confirmation procedure at regular intervals.

Decoupling Transaction Validation and State Update. In most traditional block-
chains, transaction validation and state update are coupled with consensus. For example,
Ethereum miners must make sure all the transactions in a block are valid, update Ethereum
state accordingly, and record the result state root in that block. Prism, by design, decouples
transaction validation and state update from consensus, that is, Prism miners do not conduct
transaction validation or update state. Only after a block is confirmed, transactions in it
are validated, and state is updated accordingly. In this procedure, invalid transactions are
sanitized out of the confirmed ledger. We note that invalid transactions still incur gas fees
for the senders and thus a rational user has no incentive to send invalid transactions. If the
transaction sender has inadequate balance to pay the gas fee, the transaction will be treated
as spam and skipped. Nevertheless this type of invalid transactions could reduce the utility
of network bandwidth. To mitigate this spamming attack, miners could validate transactions
(by checking sender’s balance is no less than gas fee) with respect to their latest confirmed
state, giving the adversary only a small window to create invalid transactions and spam the
system. By this method, spam traffic is reduced by 80% whereas the confirmation latency
is only increased by 5 seconds [62]. We do not implement this defense against spamming
attack in this work.

Prior work Hyperledger Fabric [30] also separates transaction validation and state update
from consensus by the following three-step execute-order-validate paradigm: (1) nodes ex-
ecute transactions and collect endorsements for the executions, (2) responsible nodes order
the executed transactions through a consensus protocol, and (3) the ordered transactions
are validated by all nodes and the state is updated according to valid transactions. Prism

38

is similar to Hyperledger Fabric in that they both separate transaction validation and state
update from consensus. Notably, a common feature for Prism and Hyperledger Fabric is that
the ledger could possibly contain invalid transactions at first, which would be sanitized out
of the ledger later. Nevertheless, they are different in two ways. (1) Prism orders transac-
tions, then executes and validates them. In other words, it adopts the order-execute-validate
paradigm in contrast to Hyperledger Fabric’s execute-order-validate paradigm. This order-
execute-validate paradigm is closely related to traditional consensus protocols, whereas the
paradigm of Hyperledger Fabric deviates far from traditional ones. (2) In Hyperledger Fab-
ric, the execution of a transaction only occurs on a special set of nodes, and the validation
requires these nodes to sign and transmit endorsements. Whereas in Prism, validation does
not require such endorsements in that a transaction is validated by checking its local execu-
tion outcome; this execution and validation are replicated on every node. These differences
imply that Prism fits well with current platforms such as Ethereum and can replace tra-
ditional consensus protocols seamlessly, while Hyperledger Fabric requires some efforts to
design full-node and light-node clients in order to meet its novel requirements.

No Pending Transaction Exchange. Most traditional blockchain clients exchange pend-
ing transactions in their memory pools with peers. Because the block mining rate is very
low and the next block author is unpredictable, transaction exchange is necessary to ensure
that pending transactions get included in the next block. This reduces network bandwidth
utility since transactions are broadcast twice in the network: first as pending transactions
and then as part of a block.

In Prism, pending transaction exchange can be onerous to the network bandwidth due to
the high throughput. We design our implementation to avoid exchanging pending transac-
tions by noting that a pending transaction can be easily included in a new block in a very
short amount of time by any individual miner thanks to the high mining rate of Prism’s trans-
action blocks. Transaction blocks carrying pending transactions are broadcast to peers, in
the same way blocks are broadcast in traditional blockchains. Notice that a user can still
send a transaction to multiple miners for redundancy. However, miners need not exchange
it. Such a design avoids the waste of network bandwidth and contributes to the final high
throughput.

Signature Verification in Consensus. Transaction signature verification is a significant
fraction of total computation, and the computation becomes only heavier when the achieved
throughput is higher. We design our implementation to conduct the signature verification
in parallel inside Prism Consensus via the thread pool functionality. This is a departure

39

from implementations in EVM (Ethereum) and MoveVM (Diem) which conduct signature
verification inside the VM executor. Either sequentially or in parallel, signature verification
burdens the VM executor and harms the throughput.

3.5 EVALUATION

In this section we describe our experiments and performance results of our implementation
of a prototype client designed by following the guidelines highlighted in the previous section.
We describe experiment settings and the applications that we measure (§3.5.1). Then we
present the throughput and confirmation latency results of Prism integrated with two virtual
machines, EVM and MoveVM, from which we analyze that Prism removes the consensus
bottleneck (§3.5.2, §3.5.3). In addition, we measure how our design and implementation of
Prism scales with more network participants (§3.5.4).

3.5.1 Experiment Setting

We evaluate our implementation of Prism by integrating it with two smart contract vir-
tual machines: EVM Prism and MoveVM Prism respectively. The performance (upper
bound) baselines are provided by VM Executor Only (single node, no consensus) and Prism
Consensus Only (no smart contract platform, raw transaction throughput). VM Executor
Only experiment feeds transactions to VM Executor running on a single node and demon-
strates the optimal throughput of the VM Executor. Prism Consensus Only experiment
runs consensus with raw blocks and transactions and measures the raw data throughput. It
shows the performance that the consensus is able to support. In addition, we also implement
Ethereum’s consensus protocol (essentially the longest chain protocol) and its performance
provides a (lower bound) baseline.

Applications: We evaluate a suite of canonical applications and classify them into three
categories.

1) Basic applications: We evaluate two basic applications: Native Payment and Do Noth-
ing. Native Payment transactions are payments of native tokens in those smart contract
platforms. Do Nothing is a contract with a void function, and is the simplest possible
contract.

2) Benchmark applications: To test Prism client with standard computation or storage
read/write, we propose two applications: CPU Heavy and IO Heavy. CPU Heavy runs a
worst case of quick sort for an integer array of length 255. IO Heavy does key-value pair
write 255 times followed by key-value pair read 255 times for both forward and backward

40

order (thus total 510 times). The value type is bytes32 in EVM and bytearray in MoveVM,
which are both 256-bit data type.

3) Realistic applications: As a counterpoint to the above applications, we evaluate here
the performance with respect to two real world applications: ERC20 and CryptoKitties.
ERC20 is an Ethereum token standard [81], and we implement it by using the reference
implementation in [82]. CryptoKitties is a game that allows users to breed virtual pets. The
genes of offspring are determined by a function named mixGenes that mixes the genes of its
parents [83]. We adopt mixGenes function in our experiments, and feed random parent genes
to it. This function is significantly computational heavy compared to basic applications.

Applications for EVM are developed in Solidity programming language. We use the official
Solidity compiler v0.6.3 to compile all smart contracts to bytecode except for CryptoKitties,
which we follow the version v0.4.18 in the contract. We set the compiler to Constantinople
version and enable the default optimization. When creating a smart contract in EVM,
an account address is created and bytecode is stored under the address. Applications for
MoveVM are developed in Move IR. The smart contracts are first published as modules under
the sender’s address and then are called via scripts. We use Move IR compiler to compile the
modules and scripts to bytecode. We have basic applications and benchmark applications
and they have the same functionality as corresponding applications for EVM. Native tokens
in MoveVM have essentially the same function as ERC20 tokens in EVM, hence ERC20
experiment for MoveVM is unnecessary. As the Move language is in rapid development and
not yet mature at the moment of our experiments, it is not straightforward to implement
CryptoKitties in MoveVM.

Table 3.1 presents the statistics of applications. Transaction sizes differ because we pass
different input parameters to these applications. Number of instruction and gas are indica-
tors of the complexity in terms of both computation and storage read/write. MoveVM does
not provide the statistics for number of instruction.

To generate the workloads for our evaluations, we implement a transaction generator that
periodically generates transactions and push them into the mempool, generating different
transaction types for different applications. We cap the generation rate according to the
throughput of VM Executor Only experiment, in order not to exhaust the virtual machine.

We acquire data from the first 100 million transactions on Ethereum to derive a distri-
bution on the number of transactions sent and received by an account. We sample our
transactions using this distribution to mimic the usage of Ethereum in our experiments. For
senders and receivers, a total of 10,000 accounts is used, respectively. The transaction gener-

2Since we pass random inputs to CryptoKitties, the number is also random and we present an approxi-
mation in the table.

41

Table 3.1: EVM and MoveVM application statistics.

Native
Payment

Do
Nothing

CPU
Heavy

IO
Heavy ERC20 Crypto-

Kitties
EVM Tx Size

(Bytes) 533 536 567 567 601 631

EVM Gas 21000 21394 334390 435244 26602 140000 2

Num of Instruction 0 32 88417 25364 309 25000 2

MoveVM Tx Size
(Bytes) 424 329 365 366 N/A N/A

MoveVM Gas 43076 629 2275420 2956846 N/A N/A

ator of each node is initialized with 10,000 key pairs, one key pair for each account. In order
to mimic the usage of Ethereum for Native Payment and ERC20, each node randomly and
independently draws a sender and a receiver address from the aforementioned distribution.
Other applications like Do Nothing, CryptoKitties, CPU Heavy, and IO Heavy have a fixed
receiver (EVM) or no receiver (MoveVM) and hence we only sample the sender’s address.

Experiment environment. We perform our experiments on 100 Amazon EC2 c5d.4xlarge
instances. Each instance has 16 CPU cores, 32 GB memory, and NVMe SSD storage. Each
instance hosts one Prism client and they are connected to form a random 4-regular topology,
the diameter of which is 6. To emulate a realistic peer-to-peer network, we introduce a prop-
agation delay of 120 ms on each link to match the typical delay in Ethereum’s network [84],
and a rate limiter of 300 Mbps for both ingress and egress traffic except for Prism Consensus
Only experiment where the rate limiter is 600 Mbps in order to show the performance upper
bound that the consensus can reach.

Parameters. For EVM Prism and MoveVM Prism, we choose a high adversarial hash
power capability of β = 0.4 and a very low deconfirmation probability ϵ = 2 × 10−9. We
use m = 1000 voter chains and cap the size of transaction blocks to be 200 tx/block. Given
the testbed with 120 ms peer-to-peer delay, we tune the mining rate of Prism’s proposer
and voter blocks to be 0.08 block/s, at which the empirical forking rate 3 is less than 0.11
in all experiments, and thus it ensures the security of Prism. We tune the mining rate
of transaction blocks differently for different applications to match the throughput of VM
Executor Only experiment: In EVM Prism, Native Payment 108; Do Nothing 180; ERC20
70; CryptoKitties 3.78; CPU Heavy 1.08; IO Heavy 2.34 block/s. In MoveVM Prism, Native
Payment 12.6; Do Nothing 7.2; CPU Heavy 1.44; IO Heavy 3.06 block/s.

For the Prism Consensus Only experiment, we increase the size of transaction blocks to
3Forking rate is calculated by 1− # blocks in longest chain

blocks .

42

400 tx/block and the mining rate to 200 block/s in order to show the performance upper
bound that the consensus can reach. As for the Ethereum experiment, we use a mining rate
of 0.1 block/s and a block size of 200 tx/block, which resemble the live Ethereum parameters.

20:37 20:38 20:39 20:40 20:41 20:42 20:43 20:44 20:45 20:46
 0

 10 k

 20 k

 30 k

 40 k

 50 k

 60 k

 70 k

 80 k

T
x
/
s

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 Throughput (All Nodes Average) Tx Block ConfirmationTime (HH:MM)

Figure 3.4: Time series plot of the throughput for Do Nothing application in EVM Prism
for 10 minutes. Around the first 30 seconds there are very few processed transactions, since
the clients are just started and have not extended the ledger significantly. After the ledger
starts to be extended significantly, the throughput soon increases and becomes stable. This
phenomenon occurs in all Prism experiments.

All experiments are run for at least 10 minutes. As we see in the time series plot of the
throughput (Figure 3.4), in the first several seconds, the nodes don’t process any transaction
because they just started mining blocks and there are not enough blocks to extend the
confirmed ledger. This phenomenon only happens at the beginning and does not affect
the performance afterwards. Hence, the final throughput calculation involves the average
performance over the last 9 minutes of the experiment.

3.5.2 Throughput and Latency of EVM

In this experiment, we measure the transaction throughput and confirmation latency of
various applications in EVM Prism and analyze the difference in throughput for different
applications. We also compare the throughput with EVM Executor Only experiment, the
optimal throughput of EVM on a single node. If the former is able to reach the latter, then
we will know the throughput of our Prism client comes very close to the optimal one of
the virtual machine. And we can conclude that Prism removes the consensus bottleneck
for smart contracts. Finally we compare EVM Prism with Prism Consensus Only to study
whether Prism is able to support even higher throughput without the limitation of the virtual

43

machine. This experiment would also indicate whether EVM Prism’s performance can be
further improved if the underlying virtual machine becomes faster.

Table 3.2: Throughput in terms of tx/s on EVM applications.

Native
Payment

Do
Nothing

CPU
Heavy

IO
Heavy ERC20 Crypto-

Kitties
EVM Executor Only 21535 35723 207 467 13095 710

EVM Prism 18660 35329 197 447 11210 661
Prism Consensus Only 4 98022 97473 92144 92144 86931 82798

Ethereum 21

Throughput: As shown in Table 3.2, for EVM Prism, the throughput of two basic
applications is able to reach 18K and 35K tx/s respectively. For ERC20, EVM Prism gets
11K tx/s. The throughput of these three applications shows that we have a good chance to
get above ten thousand tx/s for those applications that do not involve heavy computation or
storage read/write. The reason that Do Nothing is almost twice as fast as Native Payment is
that for Do Nothing, the VM Executor module updates the account information of a random
sender per transaction and a fixed receiver contract account, whereas for Native Payment
it updates a random sender and a random receiver account information. As a result, the
VM Executor needs to maintain the state database and hash accumulator for half account
information updates in Do Nothing as that in Native Payment.

For the CryptoKitties application, EVM Prism achieves 661 tx/s due to its computational
heavy nature. Similar things happen for CPU Heavy and IO Heavy, which get 197 and 447
tx/s respectively. According to the statistics in Table 3.1, these applications require more
than 25K instructions in the virtual machine, which explains their low throughput. However,
the low throughput in both EVM Prism and EVM Executor Only also indicates that EVM
has a large opportunity to improve the efficiency of execution. We write exactly the same
CPU Heavy application in Java and run in JVM, and we get a throughput over 90K tx/s.
Considering the large gap between 197 and 90K, we believe that EVM has the potential
to execute instructions more efficiently. We don’t compare IO Heavy or CryptoKitties since
they are not as straightforward to implement as a standalone program in Java.

Is Prism consensus the bottleneck? For all EVM applications, EVM Prism reaches
85% of EVM Executor Only throughput. This high percentage indicates that EVM Prism is
able to reach the optimal EVM throughput very closely. As for Prism Consensus Only, we

4In Prism Consensus Only, the consensus throughput is 418 Mbps and is converted to tx/s based on
transaction size.

44

can see the high throughput over 80K tx/s for all applications. This high number illustrates
the ability of supporting a high throughput without the limitation of the virtual machine.
It also shows that if the virtual machine becomes faster in the future, Prism is able to
support its performance as well. Hence, Prism consensus is not the throughput bottleneck;
the virtual machine itself is the bottleneck.

Compared to 21 tx/s in Ethereum experiment, which adopts Nakamoto’s longest chain
consensus, it is clear that the current Ethereum is limited by consensus.

Latency: The end to end latency of a transaction consists of two parts: confirmation
latency and execution latency. Confirmation latency is the time between the generation
of a transaction and the confirmation of the corresponding block. This latency is decided
by Prism’s confirmation rule and has a proved bound [6]. Execution latency is the time
of waiting in a queue to be executed and execution combined. As long as we cap the
transaction generation rate below the optimal virtual machine throughput in experiments,
the time in the queue is negligible. Also the execution time is less than ten milliseconds
since all applications have over one hundred tx/s throughput. Hence, execution latency is
negligible compared to confirmation latency.

Prism’s confirmation rule guarantees a confirmation latency regardless of its throughput.
In all Prism experiments including EVM Prism, MoveVM Prism, and Prism Consensus
Only, the confirmation latency is no more than 130 seconds. Notice that this latency is
achieved with adversarial ratio β = 0.4 and reversal probability ϵ = 2×10−9. To provide the
same latency under the same condition in Ethereum, it needs to wait for (k = 267)-deep [1]
and it translates to 2670 seconds if a block is mined in 10 seconds on average.

Resource utility: In a Prism client, the Prism Consensus module uses multiple threads
to process messages from/to peers efficiently. The VM Executor module, on the contrary,
runs in a single thread. In addition, RocksDB uses a few threads in the background. In
total, a Prism client should only use no more than 50 threads. In our experiments, the live
usage of CPU never exceeds 50% per core on average (notice that one instance has 16 CPU
cores). It is likely that we can optimize CPU usage in the future, for example, give a high
priority to the VM Executor thread to prevent it from competing with the Prism Consensus
module for CPUs.

By profiling the CPU usage of a client in EVM Prism Do Nothing experiment, we find that
transaction signature verification takes up to 39.2% of total CPU time (excluding mining),
a relatively high percentage. When the experiment is running at a high throughput, the
requirement of a large amount of signature verification becomes a major bottleneck, high-
lighting the importance of removing signature verification from the VM Executor module.
In our design, we have moved signature verification into the Prism Consensus module and

45

set the VM Executor free from its heavy burden.
The VM Executor of EVM is implemented efficiently with abundant number of in-memory

cache. However, it levies a heavy memory burden on the VM Executor. As our port of EVM
does not include the whole client-level cache management, the VM Executor does not free
memory efficiently. On the contrary, the memory usage increases along with the workload.
Possibly, future optimization is needed for our port of EVM.

Table 3.3 provides a breakdown statistics for three Prism block types in EVM Prism
Do Nothing experiment. We can see that transaction blocks take up to 71.2% of total
generated block data, other two blocks only 28.8%. This indicates that the majority of
utilized bandwidth contributes to the high throughput (transaction blocks), whereas Prism
overhead takes up only a small fraction (proposer and voter blocks). For other EVM Prism
(and MoveVM Prism) experiments, this breakdown statistics will remain similar except for
transaction blocks. The higher the throughput, the higher the transaction block data and
percentage. Thus, we do not analyze the breakdown statistics for other experiments.

Table 3.3: Statistics for three block types in EVM Prism Do Nothing experiment in 10
minute duration.

Mined Block Block Data Data Percentage
Proposer Block 44 4.0 MB 4.0%

Voter Block 47166 25.2 MB 24.8%
Transaction Block 107514 72.2 MB 71.2%

3.5.3 Throughput and Latency of MoveVM

In this experiment, we measure the transaction throughput and confirmation latency for
MoveVM Prism. We observe similar bottleneck and latency between this experiment and
EVM experiment, whereas there are also discrepancies in terms of throughput.

Throughput: As shown in Table 3.4, the throughput of two basic applications is only
1.1K and 2.2K tx/s respectively, which is an order of magnitude smaller than that of EVM
Prism. In private communication [85], core Diem developers have indicated to us that
improving the performance of MoveVM is in progress — when this improvement transpires,
our Prism client can fully utilize that as well. Benchmark applications get 249 and 512
tx/s and are higher than those of EVM Prism, indicating that MoveVM is more efficient at
executing instructions. The CPU Heavy throughput number, however, is still far below that
of JVM (over 90K tx/s), so we believe MoveVM has the potential to execute instructions

46

more efficiently as well.

Table 3.4: Throughput in terms of tx/s on MoveVM applications.

Native
Payment

Do
Nothing

CPU
Heavy

IO
Heavy

MoveVM Executor Only 1441 2501 269 585
MoveVM Prism 1172 2243 249 512

Prism Consensus Only 4 123222 158802 143140 142749

Is Prism consensus the bottleneck? For all MoveVM applications, MoveVM Prism
reaches 81% of MoveVM Executor Only throughput. This phenomenon is similar to EVM
and indicates that MoveVM Prism is able to reach the optimal MoveVM throughput. As for
Prism Consensus Only, we can see the high throughput over 120K tx/s as well. Similar to
the case of EVM, we conclude that Prism removes the consensus bottleneck for MoveVM,
and the virtual machine itself is the bottleneck.

Latency: Prism guarantees a confirmation latency regardless of the throughput, and we
do observe that in all Prism experiments including MoveVM Prism, the average confirmation
latency is no more than 130 seconds.

Resource utility: MoveVM Prism maintains a good memory usage which is kept under
3.2 GB in all experiments. The live usage of CPU never exceeds 32% per core on average.
Compared to EVM Prism experiment, this CPU utility reduction is due to smaller through-
put and more efficient signature verification. MoveVM adopts Ed25519 signature [86] which
is faster than ECDSA [87] adopted by EVM.

3.5.4 Scalability

In this experiment, we evaluate Prism’s ability to scale with more network participants.
We use a larger number, 300, EC2 instances and the same propagation delay and rate limiter.
We use a random 5-regular topology for 300 nodes, keeping diameter the same with that of
100 nodes. We also keep the same Prism parameter, including the overall mining rate, so that
the individual mining rate is modified. By our design, only the Prism Consensus module
is related to scaling with more network participants as it is in charge of communicating
with peers. In addition, Prism Consensus module’s performance is not affected by which
application it is running. Hence, it suffices to experiment with one VM and application to
demonstrate Prism’s scalability. In the experiment, we use EVM Prism and Native Payment.

The experiment for 300 nodes also runs for 10 minutes. However, it is hard to collect the

47

fine-grained metrics for such a high number of nodes. So we calculate the overall metrics
at the end of the experiment (all 10 minutes), in contrast to previous calculation (last 9
minutes).

Table 3.5 compares the performance between 100 and 300 nodes. The throughput and
latency are very similar; the difference is due to the randomness of the experiments. The
forking rate 0.113 in 300 nodes is a little larger than that in 100 nodes due to more hops and
higher delay to propagate blocks throughout the peer-to-peer network, as we can see that
the average path length is higher in the 300-node topology. This forking rate 0.113 is small
enough to ensure the security of Prism consensus as well. In addition, the block propagation
delay, as well as the forking rate, can be reduced by increasing the degree (the number
of peers per node) of the peer-to-peer network; Geth [88] and Parity Ethereum [80] client
have a default maximum degree of 50, which can sustain a low forking rate for peer-to-peer
networks with a larger number of nodes.

Table 3.5: Performance of EVM Prism Native Payment, with different network topologies.

#Node Degree
Average

Path
Length

Diameter Throughput
Confirmation

Latency
(s)

Forking

100 4 3.55 6 17268 96 0.102
300 5 3.84 6 17417 80 0.113

Resource utility on each node is also similar. In the 300-node experiment, the live usage
of CPU never exceeds 50% per core on average. The heavy memory burden of the VM
Executor module is also similar to that in 100-node experiment.

We conclude that Prism is able to scale to a large number of network participants, as long
as the underlying peer-to-peer network provides a topology with reasonable block propaga-
tion delay. We can achieve similar throughput, latency, and security in those cases.

3.6 CONCLUSION

Blockchain research thus far has progressed in a compartmentalized manner: algorithms
and protocols (many focused on consensus) are designed and studied separately from the
upper layer wrappers (virtual machine, application programming) they will interact with.
This is in contrast with Nakamoto’s Bitcoin design that was envisioned and designed as
a complete system. This layering philosophy works well when the consensus layer is the
bottleneck and much work can be expended to improve the performance (indeed, this is the

48

case with many blockchains, including Ethereum). Prism is a recent consensus algorithm,
closely inspired by Nakamoto’s longest chain protocol, with theoretically optimal throughput
and latency. In this chapter we explore how Prism fits with two smart contract virtual
machines, EVM and MoveVM, by implementing Prism underneath these virtual machines.
We demonstrate that Prism seamlessly merges with both these VMs: our implementation
approaches the optimal virtual machine throughput for a large variety of applications. This
result means that Prism removes not only the consensus bottleneck of bare metal throughput
and latency, but also that when interacting with two popular smart contract platforms.
Further improvement of the smart contract performance would have to come from new
designs of virtual machines and compilers and architectures capable of parallel execution of
smart contracts. The early research in this area [67, 69] now takes on added urgency.

To think one step ahead, after both the consensus bottleneck and smart contract bot-
tleneck are removed, what will be the bottleneck then? In reference [62], the Prism im-
plementation has an efficient transaction execution module for the UTXO model, and its
experiments show empirical evidence that improvements in database (e.g., tuning the perfor-
mance) and storage device (e.g., using better NVMe SSD) push the transaction throughput
higher. Therefore, a highly possible answer to the above question is that the storage of
blockchains will be the bottleneck after the removal of consensus and smart contract bottle-
necks. Research on blockchain storage is of importance under this scenario.

49

CHAPTER 4: BLOCKCHAIN CONSENSUS PROTOCOL FORENSICS

Blockchain consensus protocols focus on Byzantine fault-tolerant (BFT) consensus, where
a group of replicas come to a consensus even when some of the replicas are Byzantine
faulty. Multiple BFT protocols exist to securely tolerate an optimal number of faults t

under different network settings. However, if the number of faults f exceeds t, security
could be violated. In this chapter, we mathematically formalize the study of forensic support
of BFT protocols: we aim to identify as many malicious replicas as possible and in an as
distributed manner as possible. Our main result is that forensic support of BFT protocols
depends heavily on minor implementation details that do not affect the protocol’s security
or complexity. Focusing on popular BFT protocols (PBFT, HotStuff, VABA, Algorand),
we characterize their forensic support precisely, showing that there exist minor variants of
each protocol for which the forensic supports vary widely. We show strong forensic support
capability of DiemBFT, the consensus protocol of Diem cryptocurrency. Furthermore, our
lightweight forensic module implemented on a Diem client is open-sourced [11] and under
active consideration for deployment in Diem. Finally, we show that all secure BFT protocols
designed for 2t+1 replicas communicating over a synchronous network forensic support are
inherently nonexistent. This impossibility result holds for all BFT protocols even if one has
access to all states of all replicas (including Byzantine ones).

We give an introduction of the problem in §4.1. We describe our results in the context
of related work in §4.2. The formal problem statement and the security model is in §4.3.
The forensic support of PBFT, HotStuff, VABA, and Algorand are explored in §4.4, §4.5,
§4.6, §4.7, respectively. The forensic study of DiemBFT and the implementation of the
corresponding forensic protocol is in §4.8. The impossibility of forensic support for all BFT
protocols operating in the classical n = 2t+1 synchronous network setting is shown in §4.9.
Discussion of the results across 5 protocols studied is in §4.10.

This chapter is a joint work with Peiyao Sheng, Kartik Nayak, Sreeram Kannan, and
Pramod Viswanath published as reference [89].

4.1 INTRODUCTION

The core theoretical security guarantee of BFT consensus protocols is that as long as a
certain fraction of nodes are “honest”, i.e., they are non-faulty and follow the protocol, then
these nodes achieve consensus with respect to (a time-evolving) state machine regardless of
the Byzantine actions of the remaining malicious (or faulty) nodes. When the malicious

50

Table 4.1: Summary of notations.

Symbol Interpretation
n total number of replicas
t maximum number of faults for obtaining agreement and termination
f actual number of faults
m maximum number of Byzantine replicas under which forensic support can be

provided
k the number of different honest replicas’ transcripts needed to guarantee a proof

of culpability
d the number of Byzantine replicas that can be held culpable in case of an agree-

ment violation

nodes are sufficiently numerous, e.g., strictly more than a 1/3 fraction of nodes in a partially
synchronous network, they can “break security”, i.e., create different views of the state
machine at the honest participants.

In this chapter, we focus on events after malicious nodes have successfully mounted a
security breach. Specifically, we focus on identifying which of the participating nodes acted
maliciously; we refer to this action as “forensic support” and it should meet the following
two goals:

• identify as many as possible the nodes that acted maliciously with an irrefutable cryp-
tographic proof of culpability;

• identification is conducted as distributedly as possible, e.g., by the individual nodes
themselves, with no/limited communication between each other after the security
breach.

Our central finding is that the forensic possibilities crucially depend on minor imple-
mentation details of BFT protocols which do not affect protocol security or performance
(latency and communication complexity). Our findings are demonstrated in the context
of several popular BFT protocols for Byzantine Agreement (BA). We mathematically for-
mulate “forensic support” of BFT protocols to measure the forensic abilities. The forensic
support is parameterized as a triplet, (m, k, d), that represents the aforementioned goals.
The triplet, (m, k, d), along with traditional BFT protocol parameters of (n, t, f) is summa-
rized in Table 4.1. We emphasize that each of the protocol variants is safe and live when
f ≤ t (here n = 3t+1 for all the protocols considered), but their forensic supports are quite
different.

Security attacks on BFT protocols can be far more subtle than simply double voting, and
the forensic analysis is correspondingly subtle. We have analyzed the forensic support of

51

Table 4.2: Summary of results; the forensic support values of d are the largest possible and
n = 3t+ 1 here.

Protocols Forensic Support Parameters
m k d

PBFT-PK
HotStuff-view Strong 2t 1 t+ 1

VABA
HotStuff-hash Medium 2t t+ 1 t+ 1

PBFT-MAC 0
HotStuff-null None t+ 1 2t 1

Algorand 0

classical-style BFT protocols, and our main findings are summarized in Table 4.2.
• Parameter d. We show that the number of culpable nodes d that can be identified is

either 0 or as large as t+1. In other words, if at least one replica can be identified, we
can also identify the largest possible number, t+1. The only exception is for HotStuff-
null variant, where in a successful safety attack, we can identity the culpability of one
malicious replica.

• Parameter m. We show that the maximum number of Byzantine replicas m allowed
for nontrivial forensic support (i.e., d > 0) cannot be more than 2t. Furthermore, any
forensic support feasible with m is also feasible with m being its largest value 2t, i.e.,
if (m, k, d) forensic support is feasible, (2t, k, d) is also feasible.

• Parameter k. At least one replica’s transcript is needed for forensic analysis, so
k = 1 is the least possible value. This suffices for several of the BFT protocol variants.
However, for HotStuff-hash variant, k needs to be at least t + 1 for any nontrivial
forensic analysis.

• Strong forensic support. The first three items above imply that the strongest possi-
ble forensic support is (2t, 1, t+1). Further, the BFT protocols in Table 4.2 that achieve
any nontrivial forensic support automatically achieve the strongest possible forensics
(the only exception is HotStuff-hash, for which the forensic support we identified is the
best possible).

• Impossibility. For certain variants of BFT protocols (PBFT-MAC, HotStuff-null, and
Algorand), even with transcripts from all honest replicas, non-trivial forensics is simply
not possible, i.e., d = 0 even if m is set to its smallest and k set to its largest possible
values (t+1 and 2t respectively); again, HotStuff-null allows the culpability of a single
malicious replica.

• Practical impact. As forensic support is of immense importance to practical blockchain

52

systems, we conduct a forensic support analysis of DiemBFT, the consensus protocol in
the new cryptocurrency Diem, which shows in-built strong forensic support. We have
implemented the corresponding forensic analysis algorithm inside of a Diem client and
built an associated forensics dashboard. Our reference implementation is available
open-source [11] and under active consideration for deployment in Diem.

• BFT with n = 2t + 1. For a secure BFT protocol operating on a synchronous
network, the ideal setting is n = 2t+1. For every such protocol we show that at most
one culpable replica can be identified (i.e., d is at most 1) even if we have access to
the state of all honest nodes, i.e, k = t.

4.2 RELATED WORK

BFT protocols. PBFT [7, 8] is the first practical BFT SMR protocol in the partially
synchronous setting, with quadratic communication complexity of view change. HotStuff [2]
is the first partially synchronous SMR protocol that enjoys both a linear communication of
view change and optimistic responsiveness. Validated Asynchronous Byzantine Agreement is
solved by a state-of-the-art work [3] with asymptotically optimal communication complexity
and round number. Algorand [9, 21] designs a committee self-selection mechanism, and the
Byzantine Agreement protocol run by the committee decides the output for all replicas.

Usually SMR protocols have the corresponding Byzantine Agreement (BA) counterparts,
due to the fact that these SMR protocols reach agreements on a log of values in a value-
by-value way, so it is feasible to convert SMR ones to BA ones, also called single-shot BFT
protocols. In the lens of blockchain, some SMR protocols have pipelined the phases to decide
values, and are called chained BFT protocols, e.g., chained HotStuff [2] and DiemBFT [10]
(formerly known as LibraBFT).

Beyond one-third faults. The seminal work of [5] shows that it is impossible to solve
BA when the adversary corrupts one-third replicas for partially synchronous communication
(the same bound holds for SMR). In BFT2F [90], a weaker notion of safety is defined, and
a protocol is proposed such that when the adversary corrupts more than one-third replicas,
the weaker notion of safety remains secure whereas the original safety might be violated.
However, the weaker notion of safety does not protect the system against common attacks,
e.g., double-spending attack in distributed payment systems. Flexible BFT [91] considers
the case where clients have different beliefs in the number of faulty replicas and can act
to confirm accordingly. Its protocol works when the sum of Byzantine faults and alive-but-
corrupt faults, a newly defined type of faults, are beyond one-third. Two recent works [92, 93]

53

propose BFT SMR protocols that can tolerate more than one-third Byzantine faults after
some specific optimistic period. The goal of these works is to mask the effects of faults, even
when they are beyond one-third, quite different from the goals of forensic analysis.

Distributed system forensics. Accountability has been discussed in seminal works [94,
95] for distributed systems in general. In the lens of BFT consensus protocols, accountability
is defined as the ability for a replica to prove the culpability of a certain number of Byzan-
tine replicas in [96]. Polygraph, a new BFT protocol with high communication complexity
O(n4), is shown to attain this property in [96]. Reference [97] extends Polygraph to an SMR
protocol, and devises a finality layer to “merge” the disagreement. Finality and account-
ability are also discussed in other recent works, including Casper [46], GRANDPA [98], and
Ebb-and-flow [99]. Casper and GRANDPA identify accountability as a central problem and
design their consensus protocols around this goal. Ebb-and-flow [99] observes that account-
ability is immediate in BFT protocols for safety violations via equivocating votes; however,
as pointed out in [96], safety violations can happen during the view change process and this
is the step where accountability is far more subtle.

Reference [96] argues that PBFT is not accountable and cannot be modified to be account-
able without significant change/cost. We point out that the definition of accountability in
[96] is rather narrow: two replicas with differing views must be able to identify culpability
of malicious replicas by themselves. On the other hand, in forensic support, we study the
number of honest replicas (not necessarily restricted to the specific two replicas which have
identified a security breach) that can identify the culpable malicious replicas. Thus the def-
inition of forensic support is more flexible than that of accountability. Moreover, our work
shows that we can achieve forensic support for protocols such as PBFT and HotStuff without
incurring additional communication complexity other than (i) sending a proof of culpability
to the client in case of a safety violation, and (ii) the need to use aggregate signatures instead
of threshold signatures.

Relationship with MPC. In the setting of secure multiparty computation (MPC), the
malicious adversary model specifies that adversaries may deviate arbitrarily from the pro-
tocol, which shares the same characteristic as Byzantine adversaries in consensus. Ref-
erence [100] introduces covert security model where the adversaries are willing to behave
maliciously only if they are not caught. Furthermore, reference [101] proposes public verifi-
able covert (PVC) security model which adds the restriction that the detection of malicious
adversaries should be publicly verifiable. In the model for forensic support, the definition of
“irrefutable proof” has the same idea as public verifiable detection in PVC model. In both

54

models, the detection of adversaries is required to persuade other parties of the adversaries’
identify. In addition, malicious parties cannot forge such a proof in the attempt of framing
honest ones.

4.3 PROBLEM STATEMENT AND MODEL

The goal of SMR is to build a replicated service that takes requests from clients and
provides them with the interface of a single non-faulty node, i.e., each client receives the
same totally ordered sequence of values. To achieve this, the replicated service uses multiple
nodes, also called replicas, some of which may be Byzantine, where a faulty replica can
behave arbitrarily. Replicas finalize a prefix of the value sequence and output it to clients.
A secure state machine replication protocol satisfies two guarantees. Safety: Any two honest
replicas cannot output different sequences of values. Liveness: A value sent by a client will
eventually be output by honest replicas.

SMR setting also has external validity, i.e., replicas only output non-duplicated values sent
by clients. These values are eventually learned by the clients. Depending on the context,
a replica may be interested in learning about outputs too. Hence, whenever we refer to a
client for learning purposes, it can be an external entity or a replica. A table of notations is
in Table 4.1. The formal definition of validated SMR is as follows:

Definition 4.1 (Validated State Machine Replication). A protocol solves validated state
machine replication among n replicas tolerating a maximum of t faults, if it satisfies the
following properties:

(Safety) Any two honest replicas output two sequences s and s′, then one is the prefix
of the other, i.e., s ⪯ s′ or s′ ⪯ s.
(Validity) If an honest replica outputs a sequence that contains a value v, v is an
externally valid value, i.e., v is signed by a client.
(Liveness) An externally valid value v sent by a client will eventually be output by
honest replicas.

This chapter mainly focuses on the setting of outputting a single value instead of a sequence
of values for simplicity, since it is not hard to extend our results from single-shot consensus
protocols to SMR ones. The problem is called Byzantine agreement (BA), and the safety
and liveness properties of BA can be expressed using the following definition:

Definition 4.2 (Validated Byzantine Agreement). A protocol solves validated Byzantine
agreement among n replicas tolerating a maximum of t faults, if it satisfies the following
properties:

55

(Agreement) Any two honest replicas output values v and v′, then v = v′.
(Validity) If an honest replica outputs v, v is an externally valid value, i.e., v is signed by
a client.
(Termination) All honest replicas start with externally valid values, and all messages sent
among them have been delivered, then honest replicas will output a value.

Forensic support. Traditionally, consensus protocols provide guarantees only when f ≤
t. There can be a safety or liveness violation when f > t, which is the setting of study
throughout this chapter. Our goal is to provide forensic support whenever there is a safety
violation (or agreement violation) and the number of Byzantine replicas in the system is
not too large. In particular, if the actual number of Byzantine faults is bounded by m (for
some m > t) and there is a safety violation, we can detect d Byzantine replicas using a
forensic protocol. The protocol takes as input the transcripts of honest parties and outputs
the irrefutable proof of d culprits. With the irrefutable proof, any party (not necessarily in
the BFT system) can be convinced of the culprits’ identities without any assumption on the
number of honest replicas. However, if even with transcripts from all honest replicas, no
forensic protocol can output such a proof, the consensus protocol has no forensic support
(denoted as “None” in Table 4.2). Note that when we say a protocol has no forensic support,
we are referring to an impossibility w.r.t. providing irrefutable proof for d culprits (more
precisely, in the context of Definition 4.3). In a general sense, there are other ways to
provide forensics related to hardware, software, and network except for non-repudiation in
the protocol.

To provide forensic support, we consider a setting where a client observes the existence of
outputs for two conflicting (unequal) values.1 By running a forensic protocol, the client sends
(possibly a subset of) these conflicting outputs to all replicas and waits for their replies. Some
of these replicas may be “witnesses” and may have (partial) information required to construct
the irrefutable proof. After receiving responses from the replicas, the client constructs the
proof. We denote by k the total number of transcripts from different honest replicas that
are stored by the client to construct the proof.

Definition 4.3. (m,k,d)-Forensic Support. If t < f ≤ m and two honest replicas output
conflicting values, then using the transcripts of all messages received from k honest replicas
during the protocol, a client can provide an irrefutable proof of culpability of at least d

Byzantine replicas.
1We assume all the (honest) replica outputs are eventually learned by the client. In practice, the client

may monitor the outputs by periodically communicating with all replicas.

56

Other assumptions. All the protocols we consider in this chapter have their own network
assumptions. For PBFT and HotStuff, we assume a partially synchronous network [5]. For
VABA [3] and Algorand [9], we suppose asynchronous and synchronous networks respectively.

We assume all messages are digitally signed except for one variant of PBFT (§4.4.3) that
sometimes relies on the use of Message Authenticated Codes (MACs). Some protocols,
e.g., HotStuff, VABA, use threshold signatures. For forensic purposes, we assume multi-
signatures [102] instead (possibly worsening the communication complexity in the process).
Whenever the number of signatures exceeds a threshold, the resulting aggregate signature is
denoted by a pair σ = (σagg, ϵ), where ϵ is a bitmap indicating whose signatures are included
in σagg. We define the intersection of two aggregated messages to be the set of replicas who
sign both messages, i.e., σ ∩ σ′ := {i|σ.ϵ[i] ∧ σ′.ϵ[i] = 1}. An aggregate signature serves as
a quorum certificate (QC) in our protocols, and we will use the two terms interchangeably.
We assume a collision resistant cryptographic hash function.

4.4 FORENSIC SUPPORT FOR PBFT

PBFT is a classical partially synchronous consensus protocol that provides an optimal
resilience of t Byzantine faults out of n = 3t+1 replicas. However, when the actual number
of faults f exceeds t, it does not provide any safety or liveness. In this section, we show that
when f > t and in case of a safety violation, the variant of the PBFT protocol (referred
to as PBFT-PK) where all messages sent by parties are signed, has the strongest forensic
support. Further, we show that for an alternative variant where parties sometimes only use
MACs (referred to as PBFT-MAC), forensic support is impossible.

4.4.1 Overview

We start with an overview focusing on a single-shot version of PBFT, i.e., a protocol
for consensus on a single value. The protocol described here uses digital signatures to
authenticate all messages and routes messages through leaders as shown in [103]; however
we note that our arguments for PBFT-PK also apply to the original protocol in [7].

The protocol proceeds in a sequence of consecutive views denoted as view number e =

1, 2, · · · . A higher view is a view with a larger view number. Each view has a unique leader.
Each view of PBFT progresses as follows:

- Pre-prepare. The leader proposes a NewView message containing a proposal v and
a status certificate M (explained later) to all replicas.

57

- Prepare. On receiving the first NewView message containing a valid value v in a
view e, a replica sends Prepare for v if it is safe to vote based on a locking mechanism
(explained later). It sends this vote to the leader. The leader collects 2t+1 such votes
to form an aggregate signature prepareQC. The leader sends prepareQC to all replicas.

- Commit. On receiving a prepareQC in view e containing message v, a replica locks
on (v, e) and sends Commit to the leader. The leader collects 2t + 1 such votes to
form an aggregate signature commitQC. The leader sends commitQC to all replicas.

- Reply. On receiving commitQC from the leader, replicas output v and send a Reply
(along with commitQC) to the client.

Once a replica locks on a value v in view e, we call (v, e) is the current lock of this replica.
And a higher lock is a lock formed in a higher view. With lock (v, e), the replica only votes
for the value v in subsequent views. The only scenario in which it votes for a value v′ ̸= v

is when the status certificate M provides sufficient information stating that 2t + 1 replicas
are not locked on v. At the end of a view, every replica sends its lock to the leader of the
next view. The next view leader collects 2t+ 1 such values as a status certificate M .

The safety of PBFT comes from two key quorum intersection arguments:

Uniqueness within a view. Within a view, safety is ensured by votes in either round.
Since a replica only votes once for the first valid value it receives, by a quorum intersection
argument, two conflicting values cannot both obtain commitQC when f ≤ t.

Safety across views. Safety across views is ensured by the use of locks and the status
certificate. First, observe that if a replica r outputs a value v in view e, then a quorum of
replicas lock on (v, e). When f ≤ t, this quorum includes a set H of at least t + 1 honest
replicas. For any replica in H to update to a higher lock, they need a prepareQC in a higher
view e′ > e, which in turn requires a vote from at least one of these honest replicas in view
e′. However, replicas in H will vote for a conflicting value v′ in a higher view only if it is
accompanied by a status certificate M containing 2t+1 locks that are not on value v. When
f ≤ t, the intersection of honest replicas in M with those in H has at least one replica –
this honest replica will not vote for a conflicting value v′.

For completeness, we also provide a complete description of the PBFT-PK protocol in
Algorithm 4.1. In the protocols in this chapter, we assume that replicas and clients ignore
messages with invalid signatures and messages containing external invalid values. When
searching for an entity (e.g., lock or prepareQC) with the highest view, break ties by alpha-
betic order of the value. Notice that ties only occur when f > t and Byzantine replicas
deliberately construct conflicting quorum certificates in a view.

58

Algorithm 4.1 PBFT-PK protocol: replica’s initial value vi
1: LOCK ← (0, v⊥, σ⊥) with selectors e, v, σ ▷ 0, v⊥, σ⊥: default view, value, and

signature
2: e← 1
3: while true do

▷ Pre-prepare and Prepare Phase
4: as a leader
5: collect ⟨ViewChange, e− 1, ·⟩ from 2t+ 1 distinct replicas as status certificate

M ▷ Assume special ViewChange messages from view 0
6: v ← the locked value with the highest view number in M
7: if v = v⊥ then
8: v ← vi
9: broadcast ⟨NewView, e, v,M⟩

10: as a replica
11: wait for valid ⟨NewView, e, v,M⟩ from leader ▷ Use function

Valid(⟨NewView, e, v,M⟩)
12: send ⟨Prepare, e, v⟩ to leader

▷ Commit Phase
13: as a leader
14: collect ⟨Prepare, e, v⟩ from 2t+ 1 distinct replicas, denote the collection as Σ
15: σ ← aggregate-sign(Σ)
16: broadcast ⟨Commit, e, v, σ⟩
17: as a replica
18: wait for ⟨Commit, e, v, σ⟩ from leader ▷ prepareQC
19: LOCK ← (e, v, σ)
20: send ⟨Commit, e, v⟩ to leader

4.4.2 Forensic Analysis for PBFT-PK

The agreement property for PBFT holds only when f ≤ t. When the number of faults is
larger, this agreement property (and even termination) can be violated. In this section, we
show how to provide forensic support for PBFT when the agreement property is violated.
We show that if two honest replicas output conflicting values v and v′ due to the presence of
t < f ≤ m Byzantine replicas, our forensic protocol can detect t+1 Byzantine replicas with
an irrefutable proof. For each of the possible scenarios in which safety can be violated, the
proof shows exactly what property of PBFT was not respected by the Byzantine replicas.
The irrefutable proof explicitly uses messages signed by the Byzantine parties, and is thus
only applicable to the variant PBFT-PK where all messages are signed.

Intuition. In order to build intuition, let us assume n = 3t + 1 and f = t + 1 and start
with a simple scenario: two honest replicas output values v and v′ in the same view. It

59

Algorithm 4.1 (cont.)
▷ Reply Phase

21: as a leader
22: collect ⟨Commit, e, v⟩ from 2t+ 1 distinct replicas, denote the collection as Σ
23: σ ← aggregate-sign(Σ)
24: broadcast ⟨Reply, e, v, σ⟩
25: as a replica
26: wait for ⟨Reply, e, v, σ⟩ from leader ▷ commitQC
27: output v and send ⟨Reply, e, v, σ⟩ to the client
28: call procedure ViewChange()
29: if a replica encounters timeout in any “wait for”, call procedure ViewChange()
30: procedure ViewChange()
31: broadcast ⟨Blame, e⟩
32: collect ⟨Blame, e⟩ from t+ 1 distinct replicas, broadcast them
33: quit this view
34: send ⟨ViewChange, e, LOCK⟩ to the next leader
35: enter the next view, e← e+ 1

36: function Valid(⟨NewView, e, v,M⟩)
37: v∗ ← the locked value with the highest view number in M
38: if (v∗ = v ∨ v∗ = v⊥)∧(M contains locks from 2t+ 1 distinct replicas) then
39: return true
40: else
41: return false

must then be the case that a commitQC is formed for both v and v′. Due to a quorum
intersection argument, it must be the case that all replicas in the intersection have voted
for two conflicting values to break the uniqueness property. Thus, all the replicas in the
intersection are culpable. For PBFT-PK, the commitQC (as well as prepareQC) for the two
conflicting values act as the irrefutable proof for detecting t+ 1 Byzantine replicas.

When two honest replicas output conflicting values in different views, there are many
different sequences of events that could lead to such a disagreement. One such sequence is
described in Figure 4.1. The replicas are split into three sets: the blue, the green, and the
red set. The blue set and the green set are honest replicas with size t, while the red set is
Byzantine replicas with size t+ 1.

• In view e, replica i outputs v due to commitQC formed with the Commit from the
honest blue set and the Byzantine red set. At the end of the view, replicas in the blue
and red set hold locks (v, e) whereas the green set holds a lower lock for a different
value.

• In the next few views, no higher locks are formed. Thus, the blue and the red set still
hold locks (v, e).

60

viewse

< i, Reply, v, σ >
No higher lock

formed

e + 1 ⋯

First view a higher
lock for formsv′

σt

t

M

e*

< j, Reply, v′ , σ′ >

Second commit
may happen

e′ ⋯

t + 1

e* − 1

(v′ , e*)

(v′ , e*)

(v, e) Locked on at the end of view ev Status certificateM σ commitQC

(v, e)

(_, _)

e′ ′ ⋯

(v′ , e′ ′)

< NewView, e*, v′ , M >

Figure 4.1: An example sequence of events in the PBFT-PK protocol that leads to
replicas i and j outputting different values.

• Suppose e∗ is the first view where a higher lock is formed. At the start of this view, the
leader receives locks from the honest green set who holds lower-ranked locks and the
Byzantine red set who maliciously sends lower-ranked locks. The set of locks received
by the leader is denoted by M . Suppose the highest lock is received for v′. The leader
proposes v′ along with M . This can make any honest replica “unlock” and vote for v′

and form quorum certificates in this view.
• In some later view e′, replica j outputs v′.
With this sequence of events, consider the following questions: (1) Is this an admissible

sequence of events? (2) How do we find the culpable Byzantine replicas? What does the
irrefutable proof consist of? (3) How many replica transcripts do we need to construct the
proof?

To answer the first question, the only nontrivial part in our example is the existence of a
view e∗ where a higher lock is formed. However, such a view e < e∗ ≤ e′ must exist because
replica j outputs v′ in view e′ and a higher lock must be formed no later than view e′.

For the second question, observe that both the red replicas as well as the green replicas
sent locks lower than (v, e) to the leader in e∗. However, only the red replicas also sent
Commit messages for value v in view e. Thus, by intersecting the set of Commit messages
for value v in view e and the messages forming the status certificate sent to the leader of e∗,
we can obtain a culpable set of t+ 1 Byzantine replicas. So the proof for PBFT-PK consists
of the commitQC in e and the status certificate in e∗, which indicates that the replicas sent
a lower lock in view e∗ despite having access to a higher lock in a lower view e.

61

For the third question, the NewView message containing the status certificate M in view
e∗ can act as the proof, so only one transcript needs to be stored.

Algorithm 4.2 Forensic protocol for PBFT-PK Byzantine agreement
1: as a replica running PBFT-PK
2: Q← all NewView messages in transcript
3: upon receiving ⟨Request-Proof, e, v, e′⟩ from a client do
4: for m ∈ Q do
5: (v′′, e′′)← the highest lock in m.M
6: if (m.e ∈ (e, e′]) ∧ (v′′ ̸= v) ∧ (e′′ ≤ e) then
7: send ⟨NewView,m⟩ to the client
8: as a client
9: upon receiving two conflicting Reply messages do

10: if the two messages are from different views then
11: ⟨Reply, e, v, σ⟩ ← the message from lower view
12: e′ ← the view number of Reply from higher view
13: broadcast ⟨Request-Proof, e, v, e′⟩
14: wait for: ⟨NewView,m⟩ s.t. m.e ∈ (e, e′]∧ (v′′ ̸= v)∧ (e′′ ≤ e) where (v′′, e′′)

is the highest lock in m.M .
15: if in m.M there are two locks (e′′, v1, σ1) and (e′′, v2, σ2) s.t. v1 ̸= v2 then
16: output σ1 ∩ σ2

17: else
18: output the intersection of senders in m.M and signers of σ.
19: else
20: ⟨Reply, e, v, σ⟩ ← first Reply message
21: ⟨Reply, e, v′, σ′⟩ ← second Reply message
22: output σ ∩ σ′

Forensic protocol for PBFT-PK. Algorithm 4.2 describes the entire protocol to obtain
forensic support atop PBFT-PK. Each replica keeps all received messages as transcripts and
maintains a set Q containing all received NewView messages (line 2). If a client observes
the replies of two conflicting values, it first checks if two values are output in the same
view (line 9). If yes, then any two commitQC for two different output values can provide a
culpability proof for at least t+1 replicas (lines 19-22). Otherwise, the client sends a request
for a possible proof between two output views e, e′ (lines 13). Each replica looks through the
set Q for the NewView message in the smallest view e∗ > e such that the status certificate
M contains the highest lock (e′′, v′′) where v′′ ̸= v and e′′ ≤ e and sends it to the client
(line 7). If inside M there are conflicting locks in the same view, the intersection of them
proves at least t + 1 culprits (line 15), otherwise the intersection of M and the commitQC
proves at least t+ 1 culprits (line 18).

62

The following theorem sharply characterizes the forensic support capability of PBFT-PK.
As long as m ≤ 2t, the best possible forensic support is achieved (i.e., k = 1 and d = t+ 1).
Algorithm 4.2 can be used to irrefutably detect t+1 Byzantine replicas. Conversely, if m > 2t

then no forensic support is possible (i.e., k = n − f (messages from all honest nodes) and
d = 0).

Theorem 4.1. With n = 3t+1, when f > t, if two honest replicas output conflicting values,
PBFT-PK provides (2t, 1, t+1)-forensic support. Further (2t+1, n− f, d)-forensic support
is impossible with d > 0.

Proof. We firstly prove the forward part of the theorem below. Suppose the values v and v′

are output in views e and e′ respectively.

Case e = e′. Culpability. The quorums commitQC for v and commitQC for v′ intersect in
t+ 1 replicas. These t+ 1 replicas should be Byzantine since the protocol requires a replica
to vote for at most one value in a view.
Witnesses. Client can obtain the culpability proof based on two commitQC. No additional
communication is needed in this case (k = 0).

Case e ̸= e′. Culpability. If e ̸= e′, then WLOG, suppose e < e′. Since v is output in view
e, it must be the case that 2t + 1 replicas are locked on (v, e) at the end of view e (if they
are honest). Now consider the first view e < e∗ ≤ e′ in which a higher lock (v′′, e∗) is formed
(not necessarily known to any honest party) where v′′ ̸= v (possibly v′′ = v′). Such a view
must exist since v′ is output in view e′ > e and a lock will be formed in at least view e′.
Consider the status certificate M sent by the leader of view e∗ in its NewView message.
M must contain 2t + 1 locks; each of these locks must be from view e′′ ≤ e, and a highest
lock among them is (v′′, e′′).

We consider two cases based on whether the status certificate contains two different highest
locks: (i) there exist two locks (v′′, e′′) and (v′′′, e′′) s.t. v′′ ̸= v′′′ in M . (ii) (v′′, e′′) is the
only highest lock in M . For the first case, since two locks are formed in the same view, the
two quorums forming the two locks in view e′′ intersect in t+ 1 replicas. These replicas are
Byzantine since they voted for more than one value in view e.

For the second case, (v′′, e′′) is the only highest lock in the status certificate M . M

intersects with the 2t+ 1 signers of commitQC in view e at t+ 1 Byzantine replicas. These
replicas are Byzantine because they had a lock on v ̸= v′′ in view e ≥ e′′ but sent a different
lock to the leader of view e∗ > e.

63

Witnesses. Client can obtain the proof by storing the NewView message containing the
status certificate M in e∗. Only one witness is needed to provide the NewView message
(k = 1). The status certificate M and the first commitQC act as the irrefutable proof.

Then we prove the converse (impossibility) part. Suppose there are f = 2t+ 1 Byzantine
replicas, and let there be three replica partitions P,Q,R, |P | = |Q| = t, |R| = t + 1. To
prove the result, suppose the protocol has forensic support for d > 0, we construct two
worlds where a different set of replicas is Byzantine in each world.

World 1. Let R,Q be Byzantine replicas in this world. During the protocol, replicas in
Q behave like honest parties. Suppose in view e, e′ (e < e′), two honest replicas p1, p2 ∈
P output two conflicting values v, v′ after receiving two commitQC. The commitQC for
v contains the Commit messages from P and R, and the commitQC for v′ contains the
Commit messages from R and Q. All the other messages never reach P . During the
forensic protocol, replicas in P send their transcripts to the client. Since the protocol has
forensic support for d > 0, the forensic protocol determines that some replicas in R are
culpable (since Q behave like honest), using these transcripts (two commitQC).

World 2. Let P,Q and some replica r ∈ R are Byzantine replicas and replicas in r behave
honestly. Again, in view e, e′ (e < e′), two replicas p1, p2 ∈ P output two conflicting
values v, v′ after receiving two commitQC. The commitQC for v contains the Commit
messages from P and R, and the commitQC for v′ contains the Commit messages from
R and Q. Replicas in R unlock themselves due to receiving a higher prepareQC formed in
e∗ (e < e∗ < e′). During the forensic protocol, replicas in P send the same transcripts as
of World 1 to the client (only two commitQC). Thus, the forensic protocol outputs some
replicas in R as culpable ones. However, this is incorrect since replicas in R are honest (r is
indistinguishable from replicas in R/{r}).

QED.

Communication complexity. In the first branch of the forensic protocol, Algorithm 4.2,
the client needs to receive one message from k = 1 replica and the message size is (2t +

1)(|v| + |sig|) where |v| and |sig| stand for the size of a value and an aggregate signature
(line 14). In the second branch, the client doesn’t need any message (line 19). Therefore the
complexity of the client receiving messages is O(n(|v| + |sig|)). Notice that we exclude the
communication for learning replica outputs (Reply messages) since that procedure happens
before the forensic protocol.

64

4.4.3 Impossibility for PBFT-MAC

We now show an impossibility for a variant of PBFT proposed in [7, Section 5]. The
arguments here also apply to the variant in [8]. Compared to §4.4.1, the only difference in
this variant is (i) Prepare and Commit messages are authenticated using MACs instead
of signatures, and (ii) these messages are broadcast instead of routing them through the
leader.

Intuition. The key intuition behind the impossibility relies on the absence of digital sig-
natures which were used to “log” the state of a replica when some replica i outputs a value.
In particular, if we consider the example in Figure 4.1, while i receives 2t+1 Commit mes-
sages for value v, these messages are not signed. Thus, if t+ 1 Byzantine replicas vote for a
different value v′, v′ can be output by a different replica. The absence of a verifiable proof
stating the set of replicas that sent a Commit to replica i prevents any forensic analysis.
We formalize this intuition below.

Theorem 4.2. With n = 3t+1, when f > t, if two honest replicas output conflicting values,
(t+ 1, 2t, d)-forensic support is impossible with d > 0 for PBFT-MAC.

Proof. Suppose the protocol provides forensic support to detect d ≥ 1 replicas with ir-
refutable proof. To prove this result, we construct two worlds where a different set of t + 1

replicas is Byzantine in each world but a forensic protocol cannot be correct in both worlds.
We fix f = t+ 1, although the arguments will apply for any f > t.

Let there be four replica partitions P,Q,R, {x}. |P | = |Q| = |R| = t, and x is an
individual replica. In both worlds, the conflicting outputs are presented in the same view e.
Suppose the leader is a replica from set R.

World 1. Let P and x be Byzantine replicas in this world. The honest leader from set
R in view e proposes v′. Parties in R, x and Q send Prepare and Commit messages
(authenticated with MACs) for value v′. Due to partial synchrony, none of these messages
arrive at P . At the end of view e, only R and one replica q in Q receive enough Commit
messages and send replies to the client. So the client receives the first set of t+1 replies for
value v′, which contains the same quorum R, x,Q.

The Byzantine parties in P and x simulate a proposal from the leader for v and the sending
of Prepare and Commit messages within R,P and x. The simulation is possible due to
the absence of a PKI. At the end of view e, P and x obtain enough Commit messages and
send replies to the client. Thus, the client receives the second set of t+1 replies for value v,
which contains the same quorum P,R, x. Client starts the forensic protocol.

65

During the forensic protocol, Byzantine P and x present their votes for v and they also
forge votes from R for v as their transcripts. As t+ 1 parties have output each of v and v′,
there is a safety violation. Since the protocol has forensic support for d ≥ 1, using these
transcripts, the forensic protocol determines some replicas in P and x are culpable.

World 2. Let R and q (one replica in Q) be Byzantine replicas in this world. The Byzantine
leader in view e proposes v to P,R and x. They send Prepare and Commit messages
(authenticated with MACs) for value v. These messages do not arrive at Q. At the end of
view e, parties in P and x output v. So the client receives the first set of t + 1 replies for
value v, which contains the same quorum P,R, x.

Similarly, the leader sends v′ to Q,R and x. The proposal does not arrive at x. Only
Q and R send Prepare and Commit messages (authenticated with MACs) for v′, these
messages do not arrive at P . However, R and q forge Prepare and Commit messages
from x. At the end of view e, R and q output v′. So the client receives the second set of
t+1 replies for value v′, which contains the same quorum R, x,Q. Client starts the forensic
protocol.

During the forensic protocol, Byzantine R and q send the same transcripts as in World 1
by dropping votes for v and forging votes from x. Again, since t + 1 parties have output
each of v and v′, there is a safety violation. However, observe that the transcript presented
to the forensic protocol is identical to that in World 1. Thus, the forensic protocol outputs
some replicas in P and x as culpable replicas. In World 2, this is incorrect since replicas in
P and x are honest.

QED.

4.5 FORENSIC SUPPORT FOR HOTSTUFF

HotStuff [2] is a partially synchronous consensus protocol that provides an optimal re-
siliency of n = 3t + 1. The HotStuff protocol is similar to PBFT but there are subtle
differences which allow it to obtain a linear communication complexity for both its steady
state and view change protocols (assuming the presence of threshold signatures). Look-
ing ahead, these differences significantly change the way forensics is conducted if a safety
violation happens.

4.5.1 Overview

We start with an overview of the protocol. For simplicity, we discuss a single-shot version
of HotStuff. The protocol proceeds in a sequence of consecutive views where each view has

66

a unique leader. Each view of HotStuff progresses as follows:2

- Pre-prepare. The leader proposes a NewView message containing a proposal v

along with the highQC (the highest prepareQC known to it) and sends it to all replicas.
- Prepare. On receiving a NewView message containing a valid value v in a view e

and a highQC, a replica sends Prepare for v if it is safe to vote based on a locking
mechanism (explained later). It sends this vote to the leader. The leader collects 2t+1

votes to form an aggregate signature prepareQC in view e. The leader sends the view
e prepareQC to all replicas.

- Precommit. On receiving a prepareQC in view e containing message v, a replica
updates its highest prepareQC to (v, e) and sends Precommit to the leader. The
leader collects 2t+ 1 such votes to form an aggregate signature precommitQC.

- Commit. On receiving precommitQC in view e containing message v from the leader,
a replica locks on (v, e) and sends Commit to the leader. The leader collects 2t + 1

such votes to form an aggregate signature commitQC.
- Reply. On receiving commitQC from the leader, replicas output the value v and send

a Reply (along with commitQC) to the client.
Once a replica locks on a given value v, it only votes for the value v in subsequent views.

The only scenario in which it votes for a value v′ ̸= v is when it observes a highQC from a
higher view in a NewView message. At the end of a view, every replica sends its highest
prepareQC to the leader of the next view. The next view leader collects 2t + 1 such values
and picks the highest prepareQC as highQC. The safety and liveness of HotStuff when f ≤ t

comes from the following:

Uniqueness within a view. Since replicas only vote once in each round, a commitQC
can be formed for only one value when f ≤ t.

Safety and liveness across views. Safety across views is ensured using locks and the
voting rule for a NewView message. Whenever a replica outputs a value, at least 2t + 1

other replicas are locked on the value in the view. Observe that compared to PBFT, there
is no status certificate M in the NewView message to “unlock” a replica. Thus, a replica
only votes for the value it is locked on. The only scenario in which it votes for a conflicting
value v′ is when the leader includes a prepareQC for v′ from a higher view in NewView
message. This indicates that at least 2t+1 replicas are not locked on v in a higher view, and
hence it should be safe to vote for it. The latter constraint of voting for v′ is not necessary

2The description of HotStuff protocol is slightly different from the basic algorithm described in [2,
Algorithm 2] to be consistent with the description of PBFT in §4.4.1.

67

for safety, but only for liveness of the protocol.

Variants of HotStuff. In this chapter, we study three variants of single-shot HotStuff,
identical for the purposes of consensus but varied for forensic support. The distinction among
them is only in the information carried in Prepare message. For all three versions, the
message contains the message type Prepare, the current view number e and the proposed
value v. In addition, Prepare in HotStuff-view contains eqc, the view number of the highQC
in the NewView message. HotStuff-hash contains the hash of highQC (cf. Table 4.3).
HotStuff-hash is equivalent to the basic algorithm described in [2, Algorithm 2]. HotStuff-
null does not add additional information.

Table 4.3: Comparison of different variants of HotStuff, the Prepare message is
⟨Prepare, e, v, Info⟩

HotStuff-view HotStuff-hash HotStuff-null
Info eqc Hash(highQC) ∅
m 2t 2t t+ 1
k 1 t+ 1 2t
d t+ 1 t+ 1 1

4.5.2 Forensic Analysis for HotStuff

If two conflicting values are output in the same view, Byzantine replicas can be detected by
using commitQC and ideas similar to that in PBFT. However, when the conflicting outputs
of replicas i and j are across views e and e′ for e < e′, the same ideas do not hold anymore. To
understand this, observe that the two key ingredients for proving the culpability of Byzantine
replicas in PBFT were (i) a commitQC for the value output in a lower view (denoted by σ

for replica i’s reply in Figure 4.1) and (ii) a status certificate from the first view higher than
e containing the locks from 2t+ 1 replicas (denoted by M for view e∗ > e in Figure 4.1). In
HotStuff, a commitQC still exists. However, for communication efficiency reasons, HotStuff
does not include a status certificate M in its NewView message. The status certificate in
PBFT provides us with the following:

• Identifying a potential set of culpable replicas. Depending on the contents of
M and knowing σ, we could identify a set of Byzantine replicas.

• Determining whether the view is the first view where a higher lock for a
conflicting value is formed. By inspecting all locks in M , we can easily determine
this. Ensuring first view with a higher lock is important. Once a higher lock is formed,

68

< i, Reply, v, σ >

Prep
are

Prec
om

mit

new lock

(v′ , e#)

viewse e + 1 ⋯ e# = e* e′ ⋯e# − 1

First view a higher
prepareQC for is formedv′

< j, Reply, v′ , σ′ >

Second outputFirst output

(e′ ′ , v′ , σ′ ′ , _)

A prepareQC on value v
generated in view e(e, v, σ, eqc) Locked on value v at the

end of view e
(v, e)

prepareQC

(e#, v′ , σ#, e′ ′)

e′ ′ ⋯

No higher lock
formed

< NewView, e#, v′ , L >

Figure 4.2: Depiction of events in the HotStuff-view protocol for the first view where
a higher prepareQC for v′ is formed.

even honest replicas may update their locks and the proof of Byzantine behavior may
not exist in the messages in subsequent views.

Let us try to understand this based on the first view e# where a higher prepareQC is
formed for v′ ̸= v (see Figure 4.2). The set of replicas which sent Prepare (the red ellipse)
in e# and formed a prepareQC are our potential set of Byzantine replicas. Why? If e# is
indeed the first view in which a higher prepareQC is formed, then all of these replicas must
have voted for a NewView message containing a highQC from a lower or equal view e′′

on a different value. If any of these replicas also held a lock (v, e) (by voting for replica i’s
output), then these replicas must have output the culpable act of not respecting the voting
rule.

The only remaining part is to ensure that this is indeed the first view where a higher
conflicting prepareQC is formed. The way to prove this is also the key difference among
three variants of HotStuff. For HotStuff-view, prepareQC contains eqc, which explicitly states
the view number of highQC in the NewView message they vote for. If eqc < e, prepareQC
provides an irrefutable proof for culpable behavior. For HotStuff-hash, the hash information
contained in Prepare provides the necessary link to the NewView message they vote, so
once the linked NewView message is accessible, the prepareQC and NewView together
serve as the proof for culpable behavior. However, for HotStuff-null, even if we receive both
prepareQC and NewView messages that are formed in the same view, no proof can be
provided to show a connection between them. A Byzantine node vote for the first higher
prepareQC can always refuse to provide the NewView message they receive.

Thus, to summarize, the red set of replicas in view e# is a potential set of culpable nodes
of size t + 1. The irrefutable proof to hold them culpable constitutes two parts, (1) the

69

first prepareQC containing their signed Prepare messages, and (2) a proof to show this is
indeed the first view. In the next two subsections we will introduce the forensic protocols of
HotStuff-view and HotStuff-hash and the impossibility of HotStuff-null to have neither forensic
protocol nor forensic support.

For completeness, a description of the general HotStuff protocol is provided in Algo-
rithm 4.3.

Algorithm 4.3 General HotStuff protocol: replica’s initial value vi, protocol variant indi-
cator var ∈ {‘HotStuff-view’, ‘HotStuff-hash’, ‘HotStuff-null’}

1: prepareQC← (0, v⊥, σ⊥, Info⊥) with selectors e, v, σ, Info
2: LOCK ← (0, v⊥) with selectors e, v ▷ 0, v⊥, σ⊥, Info⊥: default view, value, signature,

and info
3: e← 1
4: while true do

▷ Pre-prepare and Prepare Phase
5: as a leader
6: collect ⟨ViewChange, e− 1, ·⟩ from 2t+ 1 distinct replicas as M ▷ Assume

special ViewChange messages from view 0
7: highQC← the highest QC in M
8: v ← highQC.v
9: if v = v⊥ then

10: v ← vi
11: broadcast ⟨NewView, e, v, highQC⟩
12: as a replica
13: wait for ⟨NewView, e, v, highQC⟩ from leader s.t. highQC.v = v∨highQC.v = v⊥

▷ Validate v
14: if (LOCK.e < highQC.e) ∨ (LOCK.v = v ∧ LOCK.e = highQC.e) then
15: send ⟨Prepare, e, v, Info(var, highQC)⟩ to leader ▷ Use function

Info(var, highQC)

▷ Precommit Phase
16: as a leader
17: collect ⟨Prepare, e, v, Info⟩ from 2t+1 distinct replicas, denote the collection as

Σ
18: σ ← aggregate-sign(Σ)
19: broadcast ⟨Precommit, e, v, σ, Info⟩
20: as a replica
21: wait for ⟨Precommit, e, v, σ, Info⟩ from leader ▷ prepareQC
22: prepareQC← (e, v, σ, Info)
23: send ⟨Precommit, e, v⟩ to leader

70

Algorithm 4.3 (cont.)
▷ Commit Phase

24: as a leader
25: collect ⟨Precommit, e, v⟩ from 2t + 1 distinct replicas, denote the collection as

Σ
26: σ ← aggregate-sign(Σ)
27: broadcast ⟨Commit, e, v, σ⟩
28: as a replica
29: wait for ⟨Commit, e, v, σ⟩ from leader ▷ precommitQC
30: LOCK ← (e, v)
31: send ⟨Commit, e, v⟩ to leader

▷ Reply Phase
32: as a leader
33: collect ⟨Commit, e, v⟩ from 2t+ 1 distinct replicas, denote the collection as Σ
34: σ ← aggregate-sign(Σ)
35: broadcast ⟨Reply, e, v, σ⟩
36: as a replica
37: wait for ⟨Reply, e, v, σ⟩ from leader ▷ commitQC
38: output v and send ⟨Reply, e, v, σ⟩ to the client
39: call procedure ViewChange()
40: if a replica encounters timeout in any “wait for”, call procedure ViewChange()
41: procedure ViewChange()
42: broadcast ⟨Blame, e⟩
43: collect ⟨Blame, e⟩ from t+ 1 distinct replicas, broadcast them
44: quit this view
45: send ⟨ViewChange, e, prepareQC⟩ to the next leader
46: enter the next view, e← e+ 1

47: function Info(var, highQC) ▷ var ∈ {‘HotStuff-view’, ‘HotStuff-hash’, ‘HotStuff-null’}
48: if var =‘HotStuff-view’ then
49: return highQC.e

50: if var =‘HotStuff-hash’ then
51: return Hash(highQC)

52: if var =‘HotStuff-null’ then
53: return ∅

71

4.5.3 Forensic Protocols for HotStuff-view and HotStuff-hash

Algorithm 4.4 Forensic protocol for HotStuff-view
1: as a replica running HotStuff-view
2: P ← all prepareQC in transcript ▷ including prepareQC in Precommit message

and highQC in NewView message
3: upon receiving ⟨Request-Proof, e, v, e′⟩ from a client do
4: for qc ∈ P do
5: if (qc.v ̸= v) ∧ (qc.e ∈ (e, e′]) ∧ (qc.eqc ≤ e) then
6: send ⟨Proof-across-View, qc⟩ to the client
7: as a client
8: upon receiving two conflicting Reply messages do
9: if two messages are from different views then

10: ⟨Reply, e, v, σ⟩ ← the message from lower view
11: e′ ← the view number of message from higher view
12: broadcast ⟨Request-Proof, e, v, e′⟩
13: wait for ⟨Proof-across-View, qc⟩ s.t.

(1) e < qc.e ≤ e′, and
(2) (qc.v ̸= v) ∧ (qc.eqc ≤ e)

14: output qc.σ ∩ σ
15: else
16: ⟨Reply, e, v, σ⟩ ← first Reply message
17: ⟨Reply, e, v′, σ′⟩ ← second Reply message
18: output σ ∩ σ′

Forensic protocol for HotStuff-view. Algorithm 4.4 describes the protocol to obtain foren-
sic support atop HotStuff-view. Each replica keeps all received messages as transcript and
maintains a set P containing all received prepareQC from Precommit messages and highQC
from NewView messages (line 2). If a client observes outputs of two conflicting values in
the same view, it can determine the culprits using the two Reply messages (line 15). Oth-
erwise, the client sends a request to all replicas for a possible proof between two output
views e, e′ for e < e′ (line 12). Each replica looks through the set P for prepareQC formed
in views e < e# ≤ e′. If there exists a prepareQC whose value is different from the value v

output in e and whose eqc is less than or equal to e, it sends a reply with this prepareQC to
the client (line 6). The client waits for a prepareQC (line 13) formed between two output
views. For HotStuff-view, if it contains a different value from the first output value and an
older view number eqc < e, the intersection of this prepareQC and the commitQC from the
Reply message in the lower view proves at least t+ 1 culprits (line 14).

72

Algorithm 4.5 Forensic protocol for HotStuff-hash
1: as a replica running HotStuff-hash
2: P ← all prepareQC in transcript
3: Q← all NewView messages in transcript
4: upon receiving ⟨Request-Proof, e, v, e′⟩ from a client do
5: for qc ∈ P do
6: if (qc.v ̸= v) ∧ (qc.e ∈ (e, e′]) then
7: send ⟨Proof-across-View, qc⟩ to the client
8: for m ∈ Q do
9: if (m.v ̸= v) ∧ (m.e ∈ (e, e′]) ∧ (m.highQC.e ≤ e) then

10: send ⟨NewView,m⟩ to the client
11: as a client
12: NV ← {}
13: upon receiving two conflicting Reply messages do
14: if two messages are from different views then
15: ⟨Reply, e, v, σ⟩ ← the message from lower view
16: e′ ← the view number of message from higher view
17: broadcast ⟨Request-Proof, e, v, e′⟩
18: upon receiving ⟨NewView,m⟩ do
19: if (m.v ̸= v) ∧ (m.e ∈ (e, e′]) ∧ (m.highQC.e ≤ e) then
20: NV ← NV ∪ {m}
21: wait for ⟨Proof-across-View, qc⟩ s.t.

(1) e < qc.e ≤ e′, and
(2) (qc.v ̸= v) ∧ (∃m ∈ NV,Hash(m) = qc.hash)

22: output qc.σ ∩ σ
23: else
24: ⟨Reply, e, v, σ⟩ ← first Reply message
25: ⟨Reply, e, v′, σ′⟩ ← second Reply message
26: output σ ∩ σ′

Forensic protocol for HotStuff-hash. Algorithm 4.5 describes the protocol to obtain foren-
sic support atop HotStuff-hash, which is similar to the protocol for HotStuff-view. For replicas
running HotStuff-hash, besides P , they also maintain the set Q for received NewView mes-
sages (line 3). When receiving a forensic request from clients, replicas look through P for
prepareQC formed in views e < e# ≤ e′ and send all prepareQC whose values are different
from the value v to the client (line 7). Besides, they also look through Q for a NewView
message formed in views e < e# ≤ e′ and send all NewView proposing a value different
from v and containing a highQC with view number ≤ e (line 10). For HotStuff-hash, when
receiving such a NewView for different values, the message will be stored temporarily by
the client until a prepareQC for the NewView message with a matching hash is received.
The NewView and the prepareQC together form the desired proof; the intersection of the

73

prepareQC and the commitQC provides at least t+ 1 culprits.

Forensic proofs. The following theorems characterize the forensic support capability of
HotStuff-view and HotStuff-hash. As long as m ≤ 2t, HotStuff-view can achieve the best
possible forensic support (i.e., k = 1 and d = t + 1). HotStuff-hash can achieve a medium
forensic support (i.e., k = t + 1 and d = t + 1). Conversely, if m > 2t then no forensic
support is possible for both protocols (i.e., k = n− f and d = 0).

Theorem 4.3. With n = 3t+1, when f > t, if two honest replicas output conflicting values,
HotStuff-view provides (2t, 1, t+1)-forensic support. Further (2t+1, n−f, d)-forensic support
is impossible with d > 0.

Proof. We prove the forward part of the theorem below. Suppose two conflicting values v, v′

are output in views e, e′ respectively.

Case e = e′. Culpability. The commitQC of v and commitQC of v′ intersect in t+1 replicas.
These t+ 1 replicas should be Byzantine since the protocol requires a replica to vote for at
most one value in a view.
Witnesses. Client can obtain a proof based on the two Reply messages, so additional wit-
nesses are not necessary in this case.

Case e ̸= e′. Culpability. If e ̸= e′, then WLOG, suppose e < e′. Since v is output in view
e, it must be the case that 2t + 1 replicas are locked on (v, e) at the end of view e. Now
consider the first view e < e∗ ≤ e′ in which a higher lock (v′′, e∗) is formed where v′′ ̸= v

(possibly v′′ = v′). Such a view must exist since v′ is output in view e′ > e and a lock will be
formed in at least view e′. For a lock to be formed, a higher prepareQC must be formed too.
Consider the first view e < e# ≤ e′ in which the corresponding prepareQC for v′′ is formed.
The leader in e# broadcasts the NewView message containing a highQC on (v′′, e′′). Since
this is the first time a higher prepareQC is formed and there is no higher prepareQC for v′′

formed between view e and e#, we have e′′ ≤ e. The formation of the higher prepareQC
indicates that 2t+1 replicas have received the NewView message proposing v′′ with highQC
on (v′′, e′′) and consider it a valid proposal, i.e., the view number e′′ is larger than their locks
because the value is different.

Recall that the output value v indicates 2t + 1 replicas are locked on (v, e) at the end
of view e. In this case, the 2t + 1 votes in prepareQC in view e# intersect with the 2t + 1

votes in commitQC in view e at t+1 Byzantine replicas. These replicas should be Byzantine
because they have been locked on the value v in view e and voted for a value v′′ ̸= v in a

74

higher view e# when the NewView message contains a highQC from a view e′′ ≤ e. Thus,
they have violated the voting rule.
Witnesses. Client can obtain a proof by storing a prepareQC formed between e and e′, whose
value is different from v and whose eqc ≤ e. So only one witness is needed (k = 1), and the
prepareQC and the first commitQC act as the irrefutable proof.

The proof of converse (impossibility) is the same as Theorem 4.1. QED.

Theorem 4.4. With n = 3t+1, when f > t, if two honest replicas output conflicting values,
HotStuff-hash provides (2t, t+ 1, t+ 1)-forensic support. Further (2t+ 1, n− f, d)-forensic
support is impossible with d > 0.

Proof. We prove the forward part of the theorem below. Suppose two conflicting values v, v′

are output in views e, e′ respectively.

Case e = e′. Same as Theorem 4.3.

Case e ̸= e′. Culpability. Same as Theorem 4.3.
Witnesses. Since prepareQC of HotStuff-hash only has the hash of highQC, the irrefutable
proof contains the NewView message that includes the highQC and the corresponding
prepareQC with the matching hash Hash(highQC). The client may need to store all NewView
messages between e and e′ whose value is different from v and whose highQC is formed in
eqc ≤ e, until receiving a prepareQC for some NewView message with a matching hash.
In the best case, some replica sends both the NewView message and the corresponding
prepareQC, so the client only needs to store k = 1 replica’s transcript. In the worst case, we
can prove that any t + 1 messages of transcript are enough to get the proof. Consider the
honest replicas who receive the first prepareQC and the NewView message. 2t+ 1 replicas
have access to the prepareQC, and the other 2t + 1 replicas have access to the NewView
message. Among them at least t+ 1 replicas have access to both messages, and we assume
they are all Byzantine. Then t honest replicas (or more) have the prepareQC, and the other t
honest replicas (or more) have the NewView message. The total number of honest replicas
n− f ≤ 2t. Thus among any t+1 honest replicas, at least one has NewView message and
at least one (probably the other one) has prepareQC. Therefore, t+1 transcripts from honest
replicas ensure the access of both NewView message and prepareQC and thus guarantee
the irrefutable proof.

The proof of converse (impossibility) is the same as Theorem 4.1. QED.

Communication complexity. In line 13 of Algorithm 4.4, the client needs to receive one
message from k = 1 replica and the message size is (|v| + |sig|) where |v| and |sig| stand

75

for the size of a value and an aggregate signature. Therefore the complexity of the client
receiving messages is O(|v| + |sig|) for HotStuff-view. As for HotStuff-hash, theorem 4.4
shows that in the worst case, the client needs to receive messages from k = t + 1 replicas.
Each of those replicas sends one message of size O(|v|+ |sig|+ |hash|) where |hash| stands
for the size of a hash value. Therefore the complexity of the client receiving messages is
O(n(|v|+ |sig|+ |hash|)) for HotStuff-hash.

4.5.4 A Forensic Attack on HotStuff-view

Compared to HotStuff [2, Algorithm 2], Algorithm 4.3 has a slightly different voting rule
in line 14. In addition to checking whether (LOCK.e < highQC.e) ∨ (LOCK.v = v) holds
as in HotStuff [2, Algorithm 2], when the value in NewView is the same as the value in
lock, our voting rule requires LOCK.e = highQC.e.

We argue that the lack of this additional check on the view number will not affect the
safety and liveness for HotStuff, but pose a threat for forensics. In the following, we exhibit
a forensic attack on HotStuff-view protocol with the original voting rule.

• e = i > 0 : An honest replica R receives a ⟨Commit, i, v, σ⟩ from the leader and
updates its lock to be (i, v, σ). R sends ⟨Commit, i, v⟩ to leader, which is contained
in a commitQC denoted as qc1. v is output in this view.

• e = i+ 1 : R receives ⟨Commit, i+ 1, v′, σ′⟩ and updates its lock to be (i+ 1, v′, σ′).
• e = i+ 2 : A leader broadcasts ⟨NewView, i+ 2, v′, highQC⟩, where highQC is a QC

from i− 1. Replica R receives the message, checks the original voting rule, and sends
⟨Prepare, i + 2, v′, i − 1⟩, because LOCK.v = v′. This message is contained in a
prepareQC denoted as qc2. Further, v′ is output in this view.

In this execution, replica R follows the protocol, however, it will be mistakenly blamed by
Algorithm 4.4 if the client receives the qc1 for v and the qc2 for v′. Since qc2.v ̸= qc1.v and
qc2.eqc = i− 1 ≤ qc1.e = i according to line 10.

While the actual prepareQC whose intersection with qc1 should be blamed is generated
in e = i + 1, it is possible that some honest replicas who have the same transcripts as R

will be improperly held culpable in this case. By adding the condition to check LOCK.e =

highQC.e, honest replicas will not vote for a NewView with stale highQC, which prevents
them from the attack described above.

4.5.5 Impossibility for HotStuff-null

In HotStuff-null, Prepare message and prepareQC are not linked to the NewView mes-
sage. We show that this lack of information is sufficient to disable forensic support.

76

viewse

< i, Reply, v, σ >
No higher

formed
σ

⋯

Some votes for
but no formed

v′
σ

σt

t

σold

e*

< j, Reply, v′ , σ′ >

e′ ⋯

t

(v, e) Locked on (v, e) := ()(eold, v′ , σold, ∅) eold < eσ QC

(v, e)

(_, _)

(v′ , eold)

< NewView, e*, v′ , L >
< NewView, e′ , v′ , L >

⋯
σ′

⋯
L

Pick highest

Figure 4.3: World 1 of Theorem 4.5. Replicas are represented as colored nodes. Replica
partitions are P , {x} (Byzantine), R (Byzantine), and Q from top to bottom.

Intuition. When f = t+1, from the forensic protocols of HotStuff-view and HotStuff-hash,
we know that given across-view commitQC1 and commitQC2 (ordered by view) and the first
prepareQC higher than commitQC1, the intersection of prepareQC and commitQC1 contains
at least d = t + 1 Byzantine replicas. The intersection argument remains true for HotStuff-
null, however, it is impossible for a client to decide whether prepareQC is the first one only
with the transcripts sent by 2t honest replicas (when f = t+1). In an execution where there
are two prepareQC in view e∗ and e′ respectively (e∗ < e′), the Byzantine replicas (say, set
P) may not respond with the prepareQC in e∗. The lack of information disallows a client
from separating this world from another world where P is indeed honest and shares all the
information available. We formalize this intuition in the theorem below.

Theorem 4.5. With n = 3t + 1, when f > t, if two honest replicas output conflicting
values, (t + 1, 2t, d)-forensic support is impossible with d > 1 for HotStuff-null. Further,
(t+ 2, n− f, d)-forensic support is impossible with d > 0.

Proof. Suppose the protocol provides forensic support to detect d > 1 Byzantine replicas
with irrefutable proof which can be constructed from the transcripts of all honest replicas.
To prove this result, we construct two worlds where a different set of replicas is Byzantine
in each world. We will fix the number of Byzantine replicas f = t + 1, but the following
argument works for any f ≥ t+ 1.

Let there be four replica partitions P,Q,R, {x}. |Q| = |P | = |R| = t, and x is an individual
replica. In both worlds, the conflicting outputs are presented in view e, e′ (e + 1 < e′)

77

viewse

< i, Reply, v, σ >
No higher

formed
σ

⋯

 for formedσ* v′

σt

t

σold

e*

< j, Reply, v′ , σ′ >

e′ ⋯

t

(v, e) Locked on (v, e) := ()(eold, v′ , σold, ∅) eold < eσ QC

(_, _)

(v, e)

(v′ , eold)

< NewView, e*, v′ , L > < NewView, e′ , v′ , L >

⋯

σ′

⋯
L

Pick highest σ*

< NewView, e′ , v′ , L* >

:=(e*, v′ , σ*, ∅)L*

Figure 4.4: World 2 of Theorem 4.5. Replicas are represented as colored nodes. Replica
partitions are P (Byzantine), {x} (Byzantine), R, and Q from top to bottom.

respectively. Let commitQC1 be on value v in view e, and signed by P,R, x. And let
commitQC2 (and a precommitQC) be on value v′ in view e′, and signed by Q,R, x. Suppose
the leader of view e, e∗, e′ (e < e∗ < e′) is replica x.

World 1 is presented in Figure 4.3. Let R and x be Byzantine replicas in this world. In
view e∗, the leader proposes value v′ and Q sends Prepare on it, but a prepareQC is not
formed. In view e′, the Byzantine parties, together with Q, sign prepareQC on v′. e′ is the
first view where a prepareQC for v′ is formed.

During the forensic protocol, all honest replicas in P and Q send their transcripts. Byzan-
tine R and x do not provide any information. Since the protocol has forensic support, the
forensic protocol can output d > 1 replicas in R and x as culprits.

World 2 is presented in Figure 4.4. Let P and x be Byzantine replicas in this world. Here,
in view e∗ > e, P and x, together with Q sign prepareQC on v′. In this world, e∗ is the first
view where a prepareQC for v′ is formed. View e′ > e∗ is similar to that of World 1 except
that honest R receives a NewView message with prepareQC∗ (rather than prepareQCold).

During the forensic protocol, Q sends their transcripts, which are identical to those in
World 1. Byzantine P can provide the same transcripts as those in World 1. Observe that
the transcripts from P and Q presented to the forensic protocol are identical to those in
World 1. Thus, the forensic protocol can also outputs d > 1 replicas in R and x as culpable.

78

In World 2, this is incorrect since replicas in R are honest.
Based on 2t transcripts, World 1 and World 2 are indistinguishable. To obtain an ir-

refutable proof of d > 1 culprits, the client needs to collect more than 2t transcripts, more
than the number of honest parties available. QED.

Remark. The above proof can be easily modified to work with parameters d > 0 when
m = t+ 2.

4.6 FORENSIC SUPPORT FOR VABA

Validated Asynchronous Byzantine Agreement (VABA) is a state-of-the-art protocol [3]
in the asynchronous setting with asymptotically optimal O(n2) communication complexity
and expected O(1) latency for n ≥ 3t+ 1.

4.6.1 Overview

At a high-level, the VABA protocol adapts HotStuff to the asynchronous setting. There
are three phases in the protocol:

- Proposal promotion. In this stage, each of the n replicas runs n parallel HotStuff-
like instances, where replica i acts as the leader within instance i.

- Leader election. After finishing the previous stage, replicas run a leader election
protocol using a threshold-coin primitive [104] to randomly elect the leader of this
view, denoted as Leader[e] where e is a view number. At the end of the view, replicas
adopt the “progress” from Leader[e]’s proposal promotion instance, and discard values
from other instances.

- View change. Replicas broadcast quorum certificates from Leader[e]’s proposal pro-
motion instance and update local variables and/or output value accordingly.

Within a proposal promotion stage, the guarantees provided are the same as that of
HotStuff, and hence we do not repeat it here. The leader election phase elects a unique
leader at random – this stage guarantees (i) with ≥ 2/3 probability, an honest leader is
elected, and (ii) an adaptive adversary cannot stall progress (since a leader is elected in
hindsight). Finally, in the view-change phase, every replica broadcasts the elected leader’s
quorum certificates to all replicas.

79

Algorithm 4.6 Forensic protocol for VABA
1: as a replica running VABA
2: for e ≥ 1 initialize:
3: for j ∈ [n] do
4: ledger[e][j]← {}
5: coin[e]← {}
6: upon receiving ⟨i,NewView, e, v, L⟩ in view e in Proposal-Promotion instance i

do
7: (e′, v′, σ, eqc)← L ▷ Note that L has selectors e, v, σ, eqc
8: ledger[e′][i]← ledger[e′][i] ∪ {(v′, σ, eqc)}
9: upon receiving ⟨i,Prepare, e, v, σ, eqc⟩ in view e in Proposal-Promotion instance

i do
10: ledger[e][i]← ledger[e][i] ∪ {(v, σ, eqc)}
11: if Leader[e] is elected then
12: discard ledger[e][j] for j ̸= Leader[e]
13: coin[e]← inputs to threshold-coin for electing Leader[e]

14: upon receiving ⟨ViewChange, e, prepareQC, precommitQC, commitQC⟩ in view e
do

15: (e′, v′, σ, eqc)← prepareQC ▷ Note that prepareQC has selectors e, v, σ, eqc
16: ledger[e′][Leader[e′]]← ledger[e′][Leader[e′]] ∪ {(v′, σ, eqc)}
17: upon receiving ⟨Request-Proof-of-Leader, e, e′⟩ from a client do
18: for all e ≤ e∗ ≤ e′ do
19: send ⟨Proof-of-Leader, e∗, Leader[e∗], coin[e∗]⟩ to client
20: upon receiving ⟨Request-Proof, e, v, σ, e′⟩ with a collection of LeaderMsg from

a client do
21: for all e < e# ≤ e′ do
22: if Leader[e#] is not elected yet then
23: ⟨Proof-of-Leader, e#, leader, coin⟩ ← LeaderMsg of view e#

24: check leader is the leader generated by coin in view e# (otherwise don’t
reply to the client)

25: Leader[e#]← leader

26: for qc ∈ ledger[e#][Leader[e#]] do
27: if (qc.v ̸= v) ∧ (qc.eqc ≤ e) then
28: send ⟨Proof-across-View, e#, Leader[e#], qc⟩ to the client

80

Algorithm 4.6 (cont.)
29: as a client
30: upon receiving two conflicting Reply messages do
31: e← the view number of Reply from lower view
32: e′ ← the view number of Reply from higher view
33: for all e ≤ e∗ ≤ e′ initialize:
34: Leader[e∗]← {}
35: LeaderMsg[e∗]← {}
36: send ⟨Request-Proof-of-Leader, e, e′⟩ to the replica of Reply message from

higher view
37: for all e ≤ e∗ ≤ e′ do
38: wait for ⟨Proof-of-Leader, e∗, leader, coin⟩ s.t. leader is the leader gener-

ated by coin in view e∗ (otherwise the Reply message is not considered valid)
39: Leader[e∗]← leader
40: LeaderMsg[e∗]← ⟨Proof-of-Leader, e∗, leader, coin⟩
41: if the two Reply messages are from different views then
42: ⟨i,Reply, e, v, σ⟩ ← the message from lower view
43: ⟨i′,Reply, e′, v′, σ′⟩ ← the message from higher view
44: check i = Leader[e] and i′ = Leader[e′] (otherwise the Reply message is not

considered valid)
45: broadcast ⟨Request-Proof, e, v, σ, e′⟩ with LeaderMsg[e∗] for all e < e∗ ≤

e′

46: wait for ⟨Proof-across-View, e#, leader, qc⟩ s.t.
(1) e < e# ≤ e′, and
(2) (qc.v ̸= v) ∧ (qc.eqc ≤ e), and
(3) leader = Leader[e#]

47: output qc.σ ∩ σ
48: else
49: ⟨i,Reply, e, v, σ⟩ ← first Reply message
50: ⟨i′,Reply, e, v′, σ′⟩ ← second Reply message
51: check i = i′ = Leader[e] (otherwise the Reply message is not considered

valid)
52: output σ ∩ σ′

4.6.2 Forensic Support for VABA

The key difference between forensic support for HotStuff and VABA is the presence of
the leader election stage – every replica/client needs to know which replica was elected as
the leader in each view. Importantly, the threshold-coin primitive ensures that there is a
unique leader elected for each view. Thus, the forensic analysis boils down to performing an
analysis similar to the HotStuff protocol, except that the leader of a view is described by

81

the leader election phase.
We present the full forensic protocol in Algorithm 4.6 for completeness. We make the

following changes to VABA:
• Storing information for forensics. Each replica maintains a list of ledgers for

all instances, containing all received prepareQC from Prepare messages, NewView
messages, and ViewChange messages (lines 8,10,16). When the leader of a view
is elected, a replica keeps the ledger from the leader’s instance and discards others
(line 12). A replica also stores the random coins from the leader election phase for
client verification (line 13).

• Bringing proposal promotion closer to HotStuff-view. There are minor differences
in the proposal promotion phase of VABA [3] to the description in HotStuff (§4.5). We
make this phase similar to that in the description of our HotStuff protocol with forensic
support. In particular: (i) the LOCK variable stores both the view number and the
value (denoted by LOCK.e and LOCK.v), (ii) the voting rule in a proposal promotion
phase is: vote if KEY has view and value equal to LOCK, except when KEY ’s view
is strictly higher than LOCK.e, (iii) assume a replica’s own ViewChange message
arrives first so that others’ ViewChange messages do not overwrite local variables
KEY and LOCK, and (iv) add eqc into Prepare.

A client first verifies leader election (lines 36-40). Then, it follows steps similar to the
HotStuff forensic protocol (lines 41-52) except that there are added checks pertaining to
leader elections (lines 44,46,51).

We prove the forensic support in Theorem 4.6.

Theorem 4.6. For n = 3t+ 1, when f > t, if two honest replicas output conflicting values,
VABA protocol provides (2t, 1, t+ 1)-forensic support. Further (2t+ 1, n− f, d)-forensic
support is impossible with d > 0.

Proof. We prove the forward part of the theorem below. The proof of converse (impossibility)
is the same as that of Theorem 4.1.

The leader of a view is determined by the threshold coin-tossing primitive threshold-coin
and Byzantine replicas cannot forge the result of a leader election by the robustness property
of the threshold coin. Suppose two conflicting outputs happen in view e, e′ with e ≤ e′. The
replica that outputs in view e′ has access to the proof of leader election of all views ≤ e′.
Therefore, a client can verify the leader election when it receives messages from this replica.
Even if other replicas have not received messages corresponding to the elections in views
≤ e′, the client can send the proof of leader to them. The remaining forensic support proof
follows from Theorem 4.3 in a straightforward manner, where any witness will receive the

82

proof of leader from the client (if leader is not elected) and send the proof of culprits to the
client. QED.

Communication complexity. The client needs to first receive all leader election results
from view e to view e′, and each result is of size |coin| (the size of the coin in the threshold-
coin primitive). Then, the client shares leader election results with all replicas. This step
incurs receiving message complexity O(l|coin|) where l = e′ − e. Next, the client needs to
receive one message from k = 1 replica and the message size is (|v| + |sig|). Therefore the
complexity for the client receiving messages is O(|v|+|sig|+l|coin|). However, the procedure
of sharing leader election is irrelevant to forensic support, and we could assign it to replicas.
(This procedure is included in the forensic protocol because we do not want to change the
consensus protocol itself.) In that case, the client needs to receive just one leader election
result, so the receiving message complexity is O(|v|+ |sig|+ |coin|).

4.7 FORENSIC SUPPORT FOR ALGORAND

Algorand [9] is a synchronous consensus protocol which tolerates up to one-third fraction
of Byzantine users. At its core, it uses a BFT protocol from [105, 106]. However, Algo-
rand runs the protocol by selecting a small set of replicas, referred to as the committee,
thereby achieving consensus with sub-quadratic communication. The protocol is also player
replaceable, i.e., different steps of the protocol have different committees, thus tolerating
an adaptive adversary. Each replica uses cryptographic self-selection to privately decide
whether it is selected in a committee, while cryptographic self-selection works by using a
verifiable random function (VRF) [107]. The VRF value is known exclusively to the replica,
but after it sends a message to other parties, revealing the value and proving its inclusion in
the committee, the value becomes open to everyone. In this section, we present an overview
of the BFT protocol and then show why it is impossible to achieve forensic support for this
protocol.

4.7.1 Overview

We start with an overview of the single-shot version of Algorand [9], denoted as Algorand
(in a sans serif font). The protocol assumes synchronous communication, where messages are
delivered within a known bounded time. The protocol proceeds in consecutive steps, each
of which lasts for a fixed amount of time that guarantees message delivery. Each step has
a self-selected committee, and a replica can compute its VRF value which decides whether

83

it is selected in the committee. The VRF value is known exclusively to the replica itself
before it sends the value. All messages sent by a committee member is accompanied by the
VRF which allows other replicas to verify its inclusion in the committee. Parameters such
as committee size κ are chosen such that the number of honest parties in the committee is
greater than a threshold tH ≥ 2κ/3 with overwhelming probability.

The BFT protocol is divided into two sub-protocols: Graded Consensus and BBA∗. In
Graded Consensus which forms the first three steps of the protocol, each replica r inputs
its value vr. Each replica r outputs a tuple containing a value vout

r and a grade gr. In an
execution where all replicas start with the same input v, vout

r = v and gr = 2 for all replicas
r. The replicas then enter the next sub-protocol, denoted BBA∗. If gr = 2, replica r inputs
value br = 0, otherwise it inputs br = 1. At the end of BBA∗, the replicas agree on the
tuple (0, v) or (1, v⊥).3 The BBA∗ sub-protocol also uses a random coin. For simplicity, we
assume the access to an ideal global random coin. Our forensic analysis in the next section
only depends on BBA∗ and thus, we only provide an overview for BBA∗ here. The protocol
proceeds in the following steps,

• Steps 1-3 are Graded Consensus. At the end of Graded Consensus, each replica inputs
a value vr and a binary value br to BBA∗.

• Step 4. Each replica in the committee broadcasts its vote for (br, vr) along with its
VRF.

• Step s (s ≥ 5, s ≡ 2 mod 3) is the Coin-Fixed-To-0 step of BBA∗. In this step, a
replica checks Ending Condition 0: if it has received ≥ tH valid votes on (b, v) from
the previous step, where b = 0, it outputs (b, v) and ends its execution. Otherwise, it
updates br as follows:

br ←

{
1, if ≥ tH votes on b = 1

0, otherwise
(4.1)

If the replica is in the committee based on its VRF, it broadcasts its vote for (br, vr)

along with the VRF.

• Step s (s ≥ 6, s ≡ 0 mod 3). Symmetric to the previous step but for bit 1 instead of
0. Also, the votes need not be for the same v in the ending condition.

• Steps s (s ≥ 7, s ≡ 1 mod 3) is the Coin-Genuinely-Flipped step of BBA∗. In this
3v⊥ is considered external valid in Algorand.

84

step, it updates its variable br as follows:

br ←

0, if ≥ tH votes on b = 0

1, if ≥ tH votes on b = 1

random coin of step s, otherwise
(4.2)

If the replica is in the committee based on its VRF, it broadcasts its vote for (br, vr)

along with the VRF.

Safety of BBA∗ within a step. If all honest replicas reach an agreement before any
step, the agreement will hold after the step. If the agreement is on binary value 0 (1 resp.)
then the opposite Ending Condition 1 (0 resp.) will not be satisfied during the step. This is
because synchronous communication ensures the delivery of at least tH votes on the agreed
value and there are not enough malicious votes on the other value.

Safety of BBA∗ across steps. For the step Coin-Fixed-To-0 (1 resp.), if any honest
replica ends due to Ending Condition 0 (1 resp.), all honest replicas will agree on binary
value 0 and value v (1 and v⊥ resp.) at the end of the step, because there could only be less
than tH votes on binary value 1 (0 resp.). Hence, together with safety within a step, binary
value 1 and value v⊥ (0 and v resp.) will never be output.

4.7.2 Impossibility of Forensics

When the Byzantine fraction in the system is greater than one-third, with constant prob-
ability, a randomly chosen committee of size κ < n will have tH < 2κ/3. In such a situation,
we can have a safety violation. Observe that since only κ < n committee members send
messages in a round, the number of culpable replicas may be bounded by O(κ). However,
we will show an execution where no Byzantine replica can be held culpable.

Intuition. The safety condition for BBA∗ relies on the following: if some honest replica
commits to a value b, say b = 0, in a step and terminates, then all honest replicas will
set b = 0 as their local value. In all subsequent steps, there will be sufficient (> 2/3

fraction) votes for b = 0 due to which replicas will never set their local value b = 1. Thus,
independent of what Byzantine replicas send during the protocol execution, honest replicas
will only commit on b = 0. On the other hand, if replicas do not receive > 2/3 fraction of
votes for b = 0, they may switch their local value to b = 1 in the Coin-Fixed-To-1 or Coin-
Genuinely-Flipped step. This can result in a safety violation. When the Byzantine fraction

85

is greater than one-third, after some replicas have committed 0, the Byzantine replicas can
achieve the above condition by selectively not sending votes to other replicas (say set Q),
thereby making them switch their local value to b = 1. There is no way for an external client
to distinguish this world from another world where the set Q is Byzantine and states that it
did not receive these votes. We formalize this intuition in the theorem below. Observe that
our arguments work for the BBA∗ protocol with or without player replaceability.

Theorem 4.7. When the Byzantine fraction exceeds 1/3, if two honest replicas output
conflicting values, (t+ 1, 2t, d)-forensic support is impossible with d > 0 for Algorand.

Proof. We construct two worlds where a different set of replicas is Byzantine in each world.
Let replicas be split into three partitions P , Q, and R, and |P | = (n − 2ϵ)/3, |Q| = |R| =
(n + ϵ)/3 and ϵ > 0 is a small constant. Denote the numbers of replicas from P,Q,R in a
committee by p, q, r. Let κ denote the expected committee size; tH = 2κ/3. With constant
probability, we will have p < κ/3, q > κ/3 and r > κ/3 and p+ q < 2κ/3 in steps 4 to 8.

World 1. Replicas in R are Byzantine in this world. We have p+ q < tH and q + r > tH .
The Byzantine parties follow the protocol in Graded Consensus. Thus, all replicas in step 4
hold the same tuple of b = 0 and v (v ̸= v⊥). Then, the following steps are executed.

• Step 4. Honest committee members that belong to P and Q broadcast their votes
on (b = 0, v) whereas Byzantine committee members that belong to R send votes to
replicas in P and not Q.

• Step 5. Replicas in P satisfy Ending Condition 0, and output b = 0 and the value v.
Replicas in Q do not receive votes from committee members in R, so they update b = 0

and broadcast their votes on (b = 0, v). Byzantine committee members that belong to
R pretend not to receive votes from committee members in Q, and also update b = 0.
And they send votes to replicas in P and not Q.

• Step 6. Replicas in Q update b = 1 since they receive p + q < tH votes. Replicas in
R pretend not to receive votes from committee members in Q, and also update b = 1.
Committee members in Q and R broadcast their votes.

• Steps 7-8. Committee members that belong to Q and R receive q + r > tH votes, so
they update b = 1 and broadcast their votes.

• Step 9. Replicas in Q and R satisfy Ending Condition 1, and output b = 1 and v⊥, a
disagreement with replicas in P .

During the forensic protocol, replicas in P send their transcripts and state that they have
output b = 0. Q and R send their transcripts claiming in steps 4 and 5 they do not hear
from the other partition, and they state that output b = 1.

86

If this protocol has any forensic support, then it should be able to detect some replica in
R as Byzantine.

World 2. This world is identical to World 1 except (i) Replicas in Q are Byzantine and
replicas in R are honest, and (ii) the Byzantine set Q behaves exactly like set R in World 1,
i.e., replicas in Q do not send any votes to R in steps 4 and 5 and ignore their votes. During
the forensic protocol, P send their transcripts and state that they have output b = 0. Q and
R send their transcripts claiming in steps 4 and 5 they do not hear from the other partition,
and they state that output b = 1.

From an external client’s perspective, World 2 is indistinguishable from World 1. In
World 2, the client should detect some replica in R as Byzantine as in World 1, but all
replicas in R are honest. QED.

4.8 FORENSIC SUPPORT FOR DIEMBFT

In this chapter, we have focused on forensics for single-shot consensus. Chained BFT
protocols are natural candidates for consensus on a sequence with applications to blockchains.
DiemBFT is a chained version of HotStuff and is the core consensus protocol in Diem, a
new cryptocurrency supported by Facebook [108]. In this section, we show that DiemBFT
has the strongest forensic support possible (as in HotStuff-view). Further, we implement
the corresponding forensic analysis protocol as a module on top of an open source Diem
client. We highlight the system innovations of our implementation and the associated forensic
dashboard.

Diem blockchain. Diem Blockchain uses DiemBFT [10], a chained variant of HotStuff pro-
tocol for consensus. In DiemBFT, the replicas are called validators, who receive transactions
from clients and propose blocks of transactions in a sequence of rounds.

DiemBFT forensics. The culpability analysis for DiemBFT is similar to Theorem 4.4.
However, for the witnesses, the blockchain property of DiemBFT makes sure that any replica
(validator) has access to the full blockchain and thus provides (n−2, 1, t+1)-forensic support.
The formal result is below.

Theorem 4.8. For n = 3t+1, when f > t, if two honest replicas output conflicting blocks,
DiemBFT provides (n− 2, 1, t+ 1)-forensic support.

Proof. Suppose two conflicting blocks b, b′ are output in views e, e′ respectively.

87

Case e = e′. Culpability. The commitQC of b (the QC in e + 3) and commitQC of b′

intersect in t + 1 replicas. These t + 1 replicas should be Byzantine since the protocol
requires a replica to vote for at most one value in a view.
Witnesses. Client can get the proof based on the two blocks in e+3, so additional witnesses
are not necessary in this case.

Case e ̸= e′. Culpability. If e ̸= e′, then WLOG, suppose e < e′. Since b is output in view
e, it must be the case that 2t + 1 replicas are locked on (b, e) at the end of view e. Now
consider the first view e < e∗ ≤ e′ in which a higher lock (b′′, e∗) is formed where b′′, b are
not on the same chain (possibly b′′ is on the chain of b′). Such a view must exist since b′ is
output in view e′ > e and a lock will be formed in at least view e′. For a lock to be formed,
a higher prepareQC must be formed too.

Consider the first view e < e# ≤ e′ in which a prepareQC in chain of b′′ is formed. The
leader in e# broadcasts the block containing a highQC on (b′′, e′′). Since this is the first time
a higher prepareQC is formed and there is no prepareQC for chain of b′′ formed between
view e and e#, we have e′′ ≤ e. The formation of the higher prepareQC indicates that
2t+1 replicas received the block extending b′′ with highQC on (b′′, e′′) and consider it a valid
proposal, i.e., the view number e′′ is larger than their locks because the block is on another
chain.

Recall that the output block b indicates 2t + 1 replicas are locked on (b, e) at the end of
view e. In this case, the 2t + 1 votes in prepareQC in view e# intersect with the 2t + 1

votes in commitQC in view e at t+1 Byzantine replicas. These replicas should be Byzantine
because they were locked on the block b in view e and vote for a conflicting block in a higher
view e# whose highQC is from a view e′′ ≤ e. Thus, they have violated the voting rule.
Witnesses. Client can get the proof by storing a prepareQC formed in e# between e and e′

in a different chain from b. The prepareQC is for the previous block in e# whose highQC
is formed in a view e′′ < e. For the replicas who have access to the prepareQC, they must
have access to all blocks in the same blockchain. Thus, only one witness is needed (k = 1)

to provide the prepareQC and its previous block containing the highQC on (b′′, e′′). The
prepareQC, the highQC, and the first commitQC act as the irrefutable proof. QED.

The aforementioned three variants of HotStuff in §4.5 are described under the BA (single-
shot) setting to reach consensus on a single value which can be directly included in the vote
message (cf. Table 4.4, v is contained in the Prepare message). In this setting, once a
replica receives the commitQC for the value, it will output the value and send a reply to the
client, even if the commitQC is the only message it receives in the current view so far. So

88

when two honest replicas output conflicting values, it is possible that the client receives only
the commit messages and extra communication is needed. And when m > 2t, Byzantine
replicas are able to form QCs by themselves so that no other honest replicas can get access
to the first prepareQC. Thus the bound on m for HotStuff-view and HotStuff-hash is 2t.

However, the setting is slightly different in practice when the value v is no longer a
single value, but actually a block with more fields and a list of transactions/commands,
as in DiemBFT. In single-shot consensus, a block includes the transactions (value) and the
highQC. In this case, the block is too heavy to be included in a vote message, so the replicas
add the hash of the block to the vote message (see Table 4.4, Hash(b = (v, highQC)) is
contained in the Prepare message). And since only the NewView message has the block’s
preimage, replicas cannot vote/output until receiving the original blocks. Thus when two
honest replicas output conflicting values, the client can obtain the full blockchain from one
of them (k = 1) and all prepareQC are part of the blocks. In this case, even if m > 2t the
client can still enjoy non-trivial forensic support.

Table 4.4: Comparison of HotStuff-hash and DiemBFT

HotStuff-hash DiemBFT

Prepare ⟨Prepare, e, v,
Hash(highQC)⟩

⟨Prepare, e,
Hash(b = (v, highQC))⟩

k t+ 1 1

m 2t n− 2

extra
condition - must receive the

preimage of hash

Forensic module. Our prototype consists of two components, a database Forensic
Storage used to store quorum certificates received by validators, which can be accessed
by clients through JSON-RPC requests or consensus API; and an independent Detector
run by clients to analyze the forensic information.

• Forensic Storage maintains a map from the view number to quorum certificates and
stores it persistently. It is responsible for storing forensic information and allows access
by other components, including clients (via JSON-RPC requests or consensus API).

• Detector is run by clients manually to send requests periodically to connected val-
idators. It collates information received from validators, using it as the input to the
forensic analysis protocol.

89

CLIENT JSON-RPC
SERVICE MEMPOOL CONSENSUS

VIRTUAL
MACHINE EXECUTION

STORAGE

OTHER VALIDATORS

VALIDATORS

FORENSIC
STORAGE

DETECTOR

Figure 4.5: Forensic module integrated with Diem.

Testing using Twins [109]. To test the correctness of forensic protocols, we build a
testbed to simulate Byzantine attacks and construct different types of safety violations.
Ideally, for modularity purposes, our testbed should not require us to modify the underlying
consensus protocol to obtain Byzantine behavior. We leverage Twins [109], an approach to
emulate Byzantine behaviors by running two instances of a node (i.e. replica) with the same
identity. Consider a simple example setting with four nodes (denoted by node0 ∼ 3), where
node0 and node1 are Byzantine so they have twins called twin0 and twin1. The network
is split into two partitions, the first partition P1 includes nodes {node0, node1, node2} and
the second partition P2 includes nodes {twin0, twin1, node3}. Nodes in one partition can
only receive the messages sent from the same partition. The double voting attack can be
simulated when Byzantine leader proposes different valid blocks in the same view, and within
each partition, all nodes will vote for the proposed block. The network partition is used to
drop all messages sent from a set of nodes. However, it can only help construct the safety
violation within the view. To construct more complicated attacks, we further improve the
framework and introduce another operation called “detailed drop”, which drops selected
messages with specific types.

Visualization. The Detector accepts the registration of different views to get notified
once the data is updated. We built a dashboard to display the information received by
the detector and the analysis results output by the forensic protocol. Figure 4.6 shows a
snapshot of the dashboard which displays information about the network topology, hashes
of latest blocks received at different validators, conflicting blocks, detected culprit keys and
raw logs. Interactions with end-users, including Diem core-devs, have guided our design of
the dashboard.

90

View of
the honest

View of
the twins

Forensic Information

Figure 4.6: Forensic module dashboard.

4.9 IMPOSSIBILITY OF FORENSIC SUPPORT FOR N = 2T + 1

A validated Byzantine agreement protocol allows replicas to obtain agreement, validity,
and termination so far as the actual number of faults f ≤ t where t is a Byzantine threshold
set by the consensus protocol. A protocol that also provides forensic support with parameters
m and d allows the detection of d Byzantine replicas when≤ m out of n replicas are Byzantine
faulty. In particular, in §4.4 and §4.5, we observed that when t = ⌊n/3⌋, m = 2t, and k = 1,
we can obtain (2t, 1, d)-forensic support for d = t + 1. This section presents the limits on
the number of Byzantine replicas detected (d), given the total number of Byzantine faulty
replicas available in the system (m). In particular, we show that if the total number of
Byzantine faults are too high, in case of a disagreement, the number of corrupt (Byzantine)
replicas that can be deemed undeniably culpable will be too few.

Intuition. To gain intuition, let us consider a specific setting with n = 2t+1, m = n− t =

t+1, and d > 1. Thus, such a protocol provides us with agreement, validity, and termination
if the Byzantine replicas are in a minority. If they are in the majority, the protocol transcript
provides undeniable guilt of more than one Byzantine fault. We show that such a protocol
does not exist. Why? Suppose we split the replicas into three groups P , Q, and R of sizes
t, t, and 1 respectively. First, observe that any protocol cannot expect Byzantine replicas
to participate in satisfying agreement, validity, and termination. Hence, if the replicas in
Q are Byzantine, replicas in P ∪ R may not receive any messages from Q. However, if, in

91

addition, the replica R is also corrupt, then R ∪ Q can separately simulate another world
where P is Byzantine and not sending messages, and Q∪R outputs a different value. Even
if an external client obtains a transcript of the entire protocol execution (i.e., transcripts
of k = n − f honest replicas and f Byzantine replicas), the only replica that is undeniably
culpable is R since it participated in both worlds. For all other replicas, neither P nor Q

has sufficient information to prove the other set’s culpability. Thus, an external client will
not be able to detect more than one Byzantine fault correctly. Our lower bound generalizes
this intuition to hold for n > 2t, m = n− t, k = n− f , and d > n− 2t.

Theorem 4.9. For any validated Byzantine agreement protocol with t < n/2, when f > t, if
two honest replicas output conflicting values, (n− t, n−f, d)-forensic support is impossible
with d > n− 2t.

Proof. Suppose there exists a protocol that achieves agreement, validity, termination, and
forensic support with parameters n, t < n/2, m = n−t, k = n−f and d > n−2t. Through a
sequence of worlds, and through an indistinguishability argument we will show the existence
of a world where a client incorrectly holds at least one honest replica as culpable. Consider
the replicas to be split into three groups P, Q, and R with t, t, and n−2t replicas respectively.
We consider the following sequence of worlds:

World 1. [t Byzantine faults, satisfying agreement, validity, and termination]
Setup. Replicas in P and R are honest while replicas in Q have crashed. P and R start with a
single externally valid input v1. All messages between honest replicas arrive instantaneously.
Output. Since there are |Q| = t faults, due to agreement, validity and termination properties,
replicas in P and R output v1. Suppose replicas in P and R together produce a transcript
T1 of all the messages they have received.

World 2. [t Byzantine faults, satisfying agreement, validity, and termination]
Setup. Replicas in Q and R are honest while replicas in P have crashed. Q and R start with
an externally valid input v2. All messages between honest replicas arrive instantaneously.
Output. Since t replicas are Byzantine faulty, due to agreement, validity and termination
properties, replicas in Q and R output v2. Suppose replicas in Q and R together produce a
transcript T2 of all the messages they have received.

World 3. [n− t Byzantine faults satisfying validity, termination, forensic support]
Setup. Replicas in P are honest while replicas in Q and R are Byzantine. Replicas in P start
with input v1. Replicas in Q and R have access to both inputs v1 and v2. Q behaves as if it

92

starts with input v2 whereas R will use both inputs v1 and v2. Replicas in Q and R behave
with P exactly like in World 1. In particular, replicas in Q do not send any message to any
replica in P . Replicas in R perform a split-brain attack where one brain interacts with P as
if the input is v1 and it is not receiving any message from Q. Also, separately, replicas in Q

and the other brain of R start with input v2 and communicate with each other exactly like
in World 2. They ignore messages arriving from P .
Output. For replicas in P , this world is indistinguishable from that of World 1. Hence, they
output v1. Replicas in P and the first brain of R output transcript T1 corresponding to the
output. Replicas in Q and the other brain of R behave exactly like in World 2. Hence, they
can output transcript T2. Since the protocol provides (n − t, n − f, d)-forensic support for
d > n− 2t, the transcript of messages should hold d > n− 2t Byzantine replicas undeniably
corrupt. Suppose the client can find the culpability of > n − 2t replicas from Q ∪ R, i.e.,
≥ 1 replica from Q.

World 4. [n− t Byzantine faults satisfying validity, termination, forensic support]
Setup. Replicas in Q are honest while replicas in P and R are Byzantine. Replicas in Q start
with input v2. Replicas in P and R have access to both inputs v1 and v2. P behaves as if it
starts with input v1 whereas replicas in R use both v1 and v2. Replicas in P and R behave
with Q exactly like in World 2. In particular, replicas in P do not send any message to any
replica in Q. Replicas in R perform a split-brain attack where one brain interacts with Q as
if the input is v2 and it is not receiving any message from P . Also, separately, replicas in P

and the other brain of R start with input v1 and communicate with each other exactly like
in World 1. They ignore messages arriving from Q.
Output. For replicas in Q, this world is indistinguishable from that of World 2. Hence, they
output v2. Replicas in Q and the first brain of R output transcript T2 corresponding to the
output. Replicas in P and the other brain of R behave exactly like in World 1. Hence, they
can output transcript T1.

Observe that the transcript and outputs produced by replicas in P , Q, and R are exactly
the same as in World 3. Hence, the client will hold > n − 2t replicas from Q ∪ R, i.e., ≥ 1

replica from Q as culpable. However, all replicas in Q are honest in this world. This is a
contradiction. QED.

4.10 CONCLUSION

We have embarked on a systematic study of the forensic properties of BFT protocols,
focusing on 4 canonical examples: PBFT (classical), Hotstuff and VABA (state-of-the-art

93

protocols on partially synchronous and asynchronous network settings) and Algorand (pop-
ular protocol that is adaptable to proof-of-stake blockchains). Our results show that minor
variations in the BFT protocols can have outsized impact on their forensic support.

We exactly characterize the forensic support of each protocol, parameterized by the triplet
(m, k, d). The forensic support characterizations are remarkably similar across the protocols:
if any non-trivial support is possible (i.e., at least one culpable replica can be implicated;
d > 0), then the largest possible forensic support, (2t, 1, t + 1), is also possible. The one
exception to this result is the HotStuff-hash variant. Although the proof of forensic support
is conducted for each protocol and its variant individually, we observe common trends:

• For each of the protocols with strong forensic support, as a part of the protocol execu-
tion, there exist witnesses who hold signed messages from Byzantine parties indicating
that they have not followed some rule in the protocol.

• On the other hand, for protocols with no forensic support, the Byzantine parties are
able to break safety without leaving any evidence, although the mechanism to achieve
this is different for each of PBFT-MAC, Algorand, and HotStuff-null. With PBFT-MAC,
Byzantine parties are able to construct arbitrary transcripts due to the absence of
signatures. Hence, message transcripts cannot be used as evidence. With Algorand,
they can utilize a rule which relies on the absence of messages (under synchrony) to set
an incorrect protocol state without leaving a trail. With HotStuff-null, due to the lack
of links between messages across views, Byzantine parties can present fake message
transcripts and thus, pretend to be honest.

Conceptually, the burning question is whether these common ingredients can be stitched
together to form an overarching theory of forensic support for abstract families of secure
BFT protocols: First, from an impossibility standpoint, is there a relationship between the
need to use synchrony or the absence of PKI in a protocol and absence of forensic support?
Second, for the positive results, can one argue strong forensic support for an “information-
complete” variant of any BFT protocol? This is an active area of research.

From a practical standpoint, forensic analysis for existing blockchain protocols is of great
interest to the industry. Our forensic protocol for DiemBFT and its reference implementation
has made strong inroads towards practical deployment. However, one shortcoming of the
approach in this chapter is that forensic analysis is conducted only upon fatal safety breaches.
It is of great interest to conduct forensics with other forms of attacks: liveness attacks,
censorship, a small number of misbehaving replicas that impact performance. This is an
active area of research.

94

CHAPTER 5: PLAYER REPLACEABLE BLOCKCHAINS WITH
FORENSIC SUPPORT

Player replaceability is a property of a blockchain protocol that ensures every step of
the protocol is executed by an unpredictably random set of players. It guarantees security
against a fully adaptive adversary. Forensic Support is a property of a blockchain protocol
that provides the ability, with cryptographic integrity, to identify malicious parties when
there is a safety violation. It provides the ability to enforce punishments for adversarial
behavior and is a crucial component of incentive mechanism designs for blockchains. Player
replaceability and strong forensic support are both desirable properties, yet, none of the
existing BFT blockchain protocols have both properties. In this chapter, we construct a
new BFT protocol which is player replaceable and has maximum forensic support. The key
invention is the notion of a “transition certificate”, without which we show that natural
adaptation of extant BFT protocol does not lead to the desired goal of simultaneous player
replaceability and forensic support.

In addition, we adapt the notion of a transition certificate for another family of protocols,
reconfigurable protocols, which both keep a fixed set of participants within an epoch (a
period of time) and reconfigure a new set of players when it comes to the next epoch. As a
result, forensic support during the epoch switch is enhanced.

We give an introduction to this work in §5.1. We describe the security model and defi-
nitions in §5.2. §5.3 contains the construction of a new BFT protocol endowed with both
player replaceability and strong forensic support. §5.4 extends the result to reconfigurable
protocols. Related works that are not covered in the previous sections are discussed in § 5.5.
§5.6 concludes the chapter with a discussion of the relationship between player replaceability
and forensic support.

This chapter is a joint work with Peiyao Sheng, Kartik Nayak, Sreeram Kannan, and
Pramod Viswanath.

5.1 INTRODUCTION

Byzantine fault-tolerant state machine replication (BFT SMR) protocols allow a group of
parties to agree on a common sequence of values submitted by external clients. The core
security guarantee provided by BFT SMR is that as long as a certain fraction of parties
are honest, i.e., follow the protocol, then these parties achieve consensus with respect to a
time-evolving ledger regardless of the actions of the remaining malicious (Byzantine) parties
that deviate from the protocol. Of particular interest are secure and efficient BFT SMR

95

protocols: security is measured via tolerating the maximum number of Byzantine parties
under various network and cryptographic assumptions [5, 110, 111, 112, 113, 114, 115], and
efficiency is measured in terms of commit latency and communication complexity [2, 14, 112,
116, 117, 118].

Security guarantee of BFT protocols is one-sided, addressing the scenario when the number
of Byzantine parties is less than a certain threshold. Forensic support addresses the other
side: what happens when the number of Byzantine parties exceeds the allowable threshold?
Several recent works focus on designing secure BFT protocols that also have an additional
goal of accountability, i.e., the ability to detect faulty behavior through an irrefutable proof
upon security violation [46, 96, 98, 99, 119]. A recent work [89] has formally defined forensic
support of BFT protocols, providing a unified framework to compare and contrast different
designs. It also provides a detailed analysis of canonical BFT protocols (e.g., PBFT [7, 8],
HotStuff [2], VABA [3], and Algorand [9, 21, 106]) with respect to their support for forensics
on detecting Byzantine behavior. A key takeaway from this work is that, while forensic
support depends heavily on the implementation details of the protocol, deterministically
secure protocols with poly(n) communication complexity (here, n is the number of parties
in the protocol) have protocol variants with maximum forensic support (i.e., the maximum
number of Byzantine parties can be identified irrefutably using simply the transcript available
at one of the honest parties).

An entirely different aspect of BFT protocols has emerged with the advent of blockchains
and the desire to support the participation of a vast number of players: communication-
efficiency (i.e., have sub-quadratic communication complexity) combined with security against
a fully adaptive adversary; for example, Algorand [106]. Such protocols are commonly re-
ferred to as “player replaceable” since they rely on verifiably selecting small subgroups of
truly random parties in each round, thus achieving adaptive security and communication effi-
ciency. Of specific interest are secure blockchain protocols that offer both desired properties:
forensic support and player replaceability. We begin by observing that no extant blockchain
protocols offer both strong forensic support and player replaceability. For instance, HotStuff
excels in efficiency and forensic support but is not player replaceable; Algorand is player re-
placeable but has non-existent forensic support [89]. Indeed, no extant blockchain protocol
appears to have both player replaceability and strong forensic support.

Another class of protocols that substitute protocol participants is “reconfigurable” pro-
tocols, in which they select a subgroup of parties and keep them fixed for the duration of
an epoch. Reconfigurable protocols have a relaxed selection of players in that they have
no requirement on random and each-step selection. They are not secure against adaptive
adversaries as player replaceable ones do, yet they provide flexibility in substituting players

96

in that designers can choose specific reconfiguration rules. The example of these protocols
includes DiemBFT [10] which designs configuration-change commands and plans to use them
for epoch switch.

Exploring whether there is a contradiction between player replaceability and forensic sup-
port properties of BFT protocols is the main goal of this chapter. Our main result is clear:
we construct a new BFT protocol that is player replaceable and has strong forensic support
(i.e., detecting the maximum number of Byzantine nodes with the minimum number of hon-
est transcripts). Meanwhile, we show that natural adaptations of extant BFT protocols do
not lead to the desired goal. Next, we extend this protocol to build a framework for recon-
figurable protocols to obtain strong forensic support. A summary of our results is presented
in Table 5.1.

Table 5.1: Comparison of forensic properties among different protocols

Protocol Byzantine
threshold (t)

Player
replaceability

Forensic
support (d)

BFT
Protocols

Algorand [9]
n/3

Yes None 0

HotStuff [2] No Strong ⌈n/3⌉
Algorithm 5.3 Yes None 0

Our Result Algorithm 5.1 n/3 Yes Strong ⌈λ/3⌉®
¬ λ is the size of committee

Main result: a player replaceable BFT protocol with strong forensic support.
We first present a novel player replaceable BFT protocol with strong forensic support in the
partially synchronous setting, where “strong” implies that most number of Byzantine nodes
can be detected with the least number of honest transcripts. In particular, we show that
when the total fraction of Byzantine parties are fewer than (1−ϵ)2/3 (ϵ is a positive constant)
and committee sizes are λ, our forensic protocol can detect at least ⌈λ/3⌉ Byzantine parties.
Due to idiosyncratic constraints imposed by player replaceability, traditional analyses of
forensic support [89] do not immediately apply. For instance, a core component of the
forensic support analysis of existing BFT protocols relies on identifying parties that perform
two or more actions that are incompatible with each other with respect to the protocol
specification [89]. However, with player replaceability, when n is large, it is extremely unlikely
that the same player will be selected twice; thus access to incompatible actions performed by
the same player, especially across different rounds (or views) of the protocol, is unavailable.
One of our key innovations is the notion of “transition certificates”, maintained and shared

97

by each party in each round – this ensures that if Byzantine parties vote incorrectly in a
round resulting in a safety violation, there is sufficient information to detect misbehavior.

While there exist player replaceable BFT protocols with forensic support, it turns out
that minor implementation details matter to achieving both properties simultaneously. To
highlight this subtlety, we construct a protocol that is only slightly different from the one
in our main result – the only difference being the absence of sharing and maintenance of
transition certificates. Through an indistinguishability argument, we show that this player
replaceable protocol has no forensic support even though it is secure when the Byzantine
threshold is within bounds.

The result extension: adapt reconfigurable protocols for strong forensic support.
We take the critical innovation of transition certificates and apply it to a framework of
reconfigurable protocols. The difficulty for forensic analysis of reconfigurable protocols lies
within the epoch switch period, i.e., the steps during the substitution of parties. This
adaptation enables strong forensic support during epoch switch periods. If the choice of the
original protocol has strong forensic support within an epoch when the parties are fixed, this
adaptation has strong forensic support for the whole protocol execution.

5.2 MODEL AND DEFINITIONS

We consider a network with n nodes interacting via all-to-all communication. Prior to
the protocol execution, each node generates its public / private key pair honestly and sends
its public key to all other nodes. The adversary can adaptively corrupt nodes at any time
during the protocol execution after the trusted setup. Nodes that are never corrupted are
referred to as honest. The total number of nodes corrupted by the adversary in an execution
is denoted as f . The maximum number of corrupted nodes the protocols can tolerate is
denoted as t.

Network setting. We consider a partially synchronous network setting. In a partially
synchronous protocol, there exists an unknown global stabilization time (GST), after which
all transmissions between two honest nodes arrive within a bounded network delay ∆ [5].

Blockchains and state machine replication (SMR). The goal of blockchains (state
machine replication) is to build a public ledger that provides clients a totally ordered sequence
of transactions. The key security properties a blockchain protocol should provide are those

98

of safety and liveness.1

• Safety: no two honest nodes finalize two different blocks at the same position in the
ledger.

• Liveness: every valid transaction is eventually finalized by every honest node.
We use blockchain and SMR interchangeably and refer to nodes that run blockchain protocols
as “replicas”, “players”, or “participants”.

Player replaceability is a property of blockchain protocols: each step of the protocol
execution is conducted by an independently and randomly selected subset of players. Equiv-
alently, player replaceable protocols are those that are secure even in the presence of a fully
adaptive adversary. We are especially interested in efficient player replaceable protocols,
those with communication complexity subquadratic in number of players.

Reconfigurability is a property of blockchain protocols: an epoch is a period of times or
protocol steps, and each epoch of the protocol execution is conducted by a newly selected
subset of players, whereas within an epoch, the players are fixed and keep running the
protocol. Protocol designers specify the selection of players. They have the flexibility to
include diversified factors, such as stakes, performance, or external appointment, which is
out of the scope of this work.

Forensic support for blockchains. The notion of forensic support for Byzantine Agree-
ment (BA) was introduced by [89]. Forensic support refers to the ability to identify misbehav-
ing replicas whenever there is a safety violation (two honest replicas finalize different blocks
at the same position). The number of replicas that can be held culpable when t < f ≤ m is
captured by the parameter d (where m is the maximum number of Byzantine replicas under
which the forensic support can be provided). Thus, the protocol has forensic support only
when the number of faults is fewer than m. In BA, transcripts of honest parties are needed
to obtain irrefutable proof of culprits after clients detect a safety violation. The number
of transcripts to decide culpability of replicas is denoted by k. In the blockchain setting,
we adapt the definition of k to denote the number of transcripts required to detect safety
violations and construct the culpability proof.

Definition 5.1. (m,k,d)-Forensic Support. If t < f ≤ m and there is a safety violation,
then using the transcripts of all messages received from k honest replicas during the protocol,
a client can provide an irrefutable proof of culpability of at least d Byzantine replicas.

1Compared to the definition in Chapter 4, “validity” is simplified in liveness property as “...valid trans-
action...” since violation of validity is easy to detect.

99

Cryptographic primitives. All protocols we discuss here use collision resistant cryp-
tographic hash functions and digital signatures. ⟨m⟩ denotes the signed message m. The
intersection of two aggregated signatures refers to the set of replicas who sign both messages.
We use verifiable random functions (VRFs) [107] to choose a random subset of replicas to
be the leader or committee in a round. In our model, VRF has two functions: VRFsk(x)

and VerifyVRFpk(msg, x). VRFsk(x) returns two values: a hash hash and a proof π. The
hash is a HASHLEN -bit value, normalized by 2HASHLEN , i.e., hash ∈ [0, 1]. It is uniquely
determined by sk and x, and indistinguishable from a random value to anyone that does not
know sk. The proof π enables anyone that knows pk to verify the value by VerifyVRFpk. In
our protocol, (hash, π) is always appended to a message and hence not explicitly specified.
VerifyVRFpk(msg, x) verifies that hash is the correct value computed from x by using π.
The appended hash value is denoted by msg.vrf . We omit the notation of sk, pk and the
appended (hash, π) when the context is clear. In some of the protocols, VRFs may be used
to elect leaders and/or committees to obtain player replaceability, i.e., every step of the
protocol is executed by a potentially new set of parties. This approach was pioneered in
[9] to construct protocols secure under fully adaptive adversaries that are also efficient, i.e.,
subquadratic communication complexity.

5.3 MAIN RESULTS: A PLAYER REPLACEABLE PROTOCOL

Our main result is the first player replaceable BFT protocol that has strong (maximum)
forensic support. In particular, we construct a partially synchronous, player replaceable
BFT protocol (§5.3.1) that tolerates t = (1− ϵ)n/3 Byzantine faults for safety and liveness
while providing forensic support with t < f ≤ (1− ϵ)2n/3, where ϵ is a constant and can be
any constant in (0, 1). We provide the forensic protocol and formally prove that when there
is a safety violation, the protocol can hold at least ⌈λ/3⌉ Byzantine replicas culpable with
irrefutable proof, which is the best possible result (§5.3.3). On the other hand, we present a
negative result on forensics (§5.3.4) when making HotStuff [2] player replaceable using ideas
in Algorand [106], inspired by which, our protocol is equipped with an additional step, called
certified transition, to obtain both player replaceability and strong forensic support.

5.3.1 Construction of a Player Replaceable BFT Protocol with Strong Forensic Support

Intuition. In round-based protocols like HotStuff, messages of round r may not arrive
at some honest replicas due to partial synchrony. These replicas do not update their states
according to round-r messages and have “stale” states. For example, in HotStuff, if an honest

100

party commits, it must have received 2t+1 commit messages and thus at least t+1 honest
parties are locked on the committed value. However, up to n/3 honest parties may not be
locked and have such a stale state. In a non-player-replaceable world, since a majority of
honest parties guard the safety of the commit, there does not exist a (2t+ 1)-sized quorum
that votes for a different value when f ≤ t. When f > t, it has been shown in [89] that we
can detect t + 1 such parties whenever there is a safety violation. Intuitively, the idea uses
a quorum intersection between the 2t + 1 parties that send a commit message for the first
committed value and a specific set of 2t+ 1 parties that vote on a different value later.

Unfortunately, with player replaceable protocols, such an argument does not apply. Since
only a small λ-sized fraction (λ is a security parameter) of parties are chosen each time, it is
highly likely that a replica is elected in the committee only once. Thus, Byzantine replicas
can deliberately mimic the behavior of honest replicas who suffer long message delays. This
makes it difficult to distinguish between Byzantine replicas from honest replicas and thus,
as is, we may not have any forensic support under this circumstance when f > t while still
being safe and live when f ≤ t.

To address this concern, the intuition of our protocol is to enforce replicas to wait for
enough messages (2/3 of the committee size) to form a transition certificate (TC) of each
round r before entering round r+1. Waiting for messages of round r ensures that a replica’s
state is up-to-date at the beginning of round r + 1. Therefore, no honest replicas have
stale states and we can distinguish honest replicas who suffer long message delays from
Byzantine replicas, and have strong forensic support. Starting from this intuition, we design
the protocol with safety and liveness properties as well as strong forensic support.

Protocol overview. The protocol proceeds in a sequence of consecutive rounds where
each round lasts for at least 4∆ time. In each round, a set of leaders and a committee
will be self-selected from all replicas using cryptographic sortition. The role of a leader is
to collect votes from committee members and generate a quorum certificate (QC) from the
votes. It then proposes a block that contains the QC to all replicas. The role of a committee
member is to wait for the leader’s proposal and if it is valid, vote for it. We first describe
the sortition process used for election, then define the data structures used in the protocol,
and finally present the protocol.

Cryptographic sortition. We use cryptographic sortition to choose a random subset of
parties as leaders or committee members, by using VRF [107]. A replica determines its eli-
gibility to be the next leader or the committee member by computing VRF from the random
seed, the round, and the role (''leader'' or ''committee''), i.e., VRFsk(seed||curRound||role), role ∈

101

{''leader'', ''committee''}. If the VRF hash value is smaller than a threshold, the replica is
eligible to play the role. When it fulfills its role by broadcasting a message, it accompanies
the VRF output (hash value and proof), allowing other replicas to verify its eligibility. For
a message m, we denote the accompanied VRF hash value as m.vrf . The threshold is set
to τ/n for leader and λ/n for committee where τ and λ are the expected number of leaders
and the committee size, respectively. Hence, to validate cryptographic sortition of a message
m, a replica calls VerifyVRF and checks whether m.vrf < τ/n or λ/n appropriately. To
ensure that some block is proposed in each round with high probability, parameter τ should
be chosen much larger than 1, e.g., Algorand [21] chooses τ = 26. Let tH ← ⌈2λ/3⌉ where
λ is a security parameter. Thus, when f < (1− ϵ)n/3, with high probability, we have more
than 2/3 honest replicas in the committee.

Cryptographic sortition enables player replaceability in a straightforward manner. In each
round, a new leader and committee are elected privately, i.e., only the elected parties know
their eligibility before they fulfill their roles. To be resilient to strongly adaptive adversaries,
the protocol can use ephemeral keys as in Algorand [9]. For simplicity, we use the same
random seed in the genesis block for cryptographic sortition in all rounds. The protocol can
be enhanced with a frequently refreshing random seed, as in Algorand [21]. Cryptographic
sortition also works in a proof-of-stake setting if eligibility is weighted by stakes.

Blocks and quorum certificates. Client requests are batched into blocks. Each block
references its predecessor (parent) with the exception of the genesis block which has no
predecessor. A block proposed in round r, denoted br, has the following format: br :=

(cmd, parent, justify). cmd denotes client commands to be committed, parent denotes the
hash of the parent block of block br, and justify stores the quorum certificate (QC) for the
parent block. A QC for a block br consists of at least tH vote messages. A QC contains the
hash, the round number of the block, and metadata such as signatures and accompanying
VRF outputs of the vote messages. Notice that we abuse the notation qc.block to refer to
the actual block instead of the block hash when the context is clear. A block is said to be
valid if its parent is valid (genesis block is always valid) and client requests in the block meet
application-level validity conditions. A block br extends a block br′ if br′ is an ancestor of br.
Note that a block extends itself. Two blocks br and b′r′ are conflicting if they do not extend
one another.

5.3.2 Full Protocol and Safety and Liveness

In this section, we provide the full protocols, as well as formal proofs for safety and liveness
when f < (1− ϵ)n/3.

102

Full protocol. Algorithm 5.1 describes the full protocol. Each replica maintains a lock
denoted as lockedQC initialized as qcgenesis, and a set TC consisting of a set of locks for
every round. Each round proceeds as follows.

• Propose. A replica checks its potential leader eligibility using cryptographic sortition
(line 5). Leader can construct a new QC and update its own lock once receiving tH

votes for the same block. Then the leader collects commands and proposes a new block
extending from lockedQC.block.

• Process proposals. Unlike HotStuff, a replica waits for a fixed length period (period
[0, 2∆)) for proposals in case there are multiple leaders eligible to propose (line 11).
When a replica receives multiple proposals, it chooses the one with the smallest VRF
hash (line 13). At time 2∆ of this round, all replicas check the validity of the block
and the safety rule to ensure the new block extends from lockedQC.block (line 15). If
the block is valid and safe, replicas will update lockedQC, TC properly. When three
consecutive QCs are formed, the block is directly finalized, and all its previous blocks
on the same chain will also be finalized indirectly (line 32).

• Vote and timeout. Then every replica checks its eligibility to vote for the round
(line 18). The vote message is denoted as ⟨Vote, r, b, lockedQC, TC[r − 1]⟩, where r

is the current round number, b the hash of the block the committee replica votes for,
and TC[r − 1] the set of locks collected from the last round (line 19). When b = ∅,
the vote message serves as a timeout message and meanwhile contains the lock of the
committee replica. When b is not empty, it is required that b.justify = lockedQC. For
each round, replicas selected as committee broadcast their votes to all replicas.

• Wait for locks. All replicas cannot enter a round r until they receive tH locks reported
by the committee in round r − 1. If a vote message in r is received from a replica
whose lock has not been received in this round, the lock is added into a set TC[r], and
if the lock is more up-to-date, the replica updates its own lock (line 23). The replicas
will also update TC[r− 1] given TC∗[r− 1] contained in the vote. At time 4∆ or later
of a round r, replicas enter the next round r + 1 if |TC[r]| ≥ tH .

The safety follows from the following arguments.

Lemma 5.1. For any valid QC,QC ′, if QC.round = QC ′.round, QC.block and QC ′.block

are not conflicting except with exp(−Ω(λ)) probability.

Proof. To show a contradiction, suppose QC,QC ′ are formed in the same round and QC.block,
QC ′.block are conflicting, then at least 2tH distinct votes are generated by the committee in
the same round. Since honest replicas will only vote for one block, we require the following
inequality to hold: |H| + 2|B| ≥ 2tH , where H and B are the set of honest and Byzan-

103

Algorithm 5.1 A player replaceable, partially synchronous SMR protocol
1: tH ← ⌈2λ/3⌉
2: lockedQC← qcgenesis ▷ the lock variable
3: for curRound← 1, 2, . . . do

▷ At time 0 of curRound
4: TC[curRound]← ∅
5: if VRFsk(seed||curRound||''leader'') < τ/n then ▷ as the leader of curRound
6: if the number of votes in curRound− 1 for the same block ≥ tH then
7: lockedQC ← QC generated from these Vote messages
8: create block b∗ where b∗.justify← lockedQC; b∗.cmd← commands from clients
9: broadcast ⟨proposal, curRound, b∗, TC[curRound− 1]⟩

10: m← ∅
11: wait for m′ ← ⟨proposal, curRound, b∗, TC[curRound − 1]⟩ from a leader whose

cryptographic sortition is valid
12: if (m = ∅) ∨ (m′.vrf < m.vrf) then
13: m← m′ ▷ m is the proposal with the min VRF hash

▷ At time 2∆ of curRound
14: blockHash = ∅
15: if m is not empty and m.b∗ extends from lockedQC.block then
16: ProcessProposal(m) (line 27)
17: blockHash = H(m.b∗)

18: if VRFsk(seed||curRound||''committee'') < λ/n then ▷ as a committee member of
curRound

19: broadcast ⟨Vote, curRound, blockHash, lockedQC, TC[curRound− 1]⟩
20: while |TC[curRound]| < tH or before 4∆ of curRound do
21: wait for ⟨Vote, curRound, h∗, lockedQC, TC[curRound−1]⟩ whose cryptographic

sortition is valid
▷ At any time (triggered by receiving a vote)

22: upon receiving ⟨Vote, r, h∗, lockedQC∗, TC∗[r−1]⟩ s.t. cryptographic sortition is valid
do

23: if sender id has no entry in TC[r] then
24: TC[r]← TC[r] ∪ {(id, lockedQC∗)}
25: lockedQC← maxround{lockedQC∗, lockedQC} ▷ do not update in case of a draw
26: TC[r− 1]← TC[r− 1]∪ TC∗[r− 1]▷ do not update in case an entry for an id exists
27: procedure ProcessProposal(⟨proposal, r, b∗, TC∗[r − 1]⟩)
28: lockedQC← maxround{b∗.justify, lockedQC} ▷ do not update in case of a draw
29: TC[r− 1]← TC[r− 1]∪ TC∗[r− 1]▷ do not update in case an entry for an id exists
30: b′ ← b∗.parent, b← b′.parent
31: if b, b′, b∗ are in consecutive rounds then
32: finalize block b (directly) and all blocks before b (indirectly), execute commands

in the finalized blocks

104

Figure 5.1: A case where two conflicting blocks are both finalized.

tine committee members respectively. By Chernoff bound, the probability of this event is
exp(−Ω(λ)) since there are at most (1− ϵ)n/3 Byzantine replicas. QED.

Theorem 5.1. Any two conflicting blocks will not be both finalized by honest replicas
except with exp(−Ω(λ)) probability.

Proof. For contradiction, suppose two conflicting blocks are finalized by two honest replicas
(see Figure 5.1). Let br, br′ be the first directly finalized blocks (finalized in r + 2, r′ + 2 by
two consecutive QCs) that are conflicting, w.l.o.g., assume r < r′. Further, we can assume
r+1 < r′ due to Lemma 5.1. In round r+2, br is finalized, at least tH committee replicas in
round r+1 receive br+1 and update lock to at least QCr (the QC containing votes in round
r) if they are honest.

Then consider the first block br∗ (possibly br′) conflicting with br and proposed after r+1.
The br∗ .justify must be formed in a round < r because br∗ is the first conflicting block after
r + 1. Since br′ is finalized, a QC for br∗ must be formed, which means at least tH votes are
generated in round r∗.

To enter r∗ > r + 1, replicas need to collect at least tH locks from committee members in
r + 1. Remember at least tH committee replicas in round r + 1 are locked on QCr, then for
every replica, TC[r + 1] must contain at least one QCr reported by honest replica except
with exp(−Ω(λ)) probability. Since honest replicas who are locked on QCr cannot vote for
a staler lock and f < (1− ϵ)n/3, it is contradictory that a QC for br∗ is formed. QED.

Since the protocol is synchronous after GST, the liveness satisfies the following statements.

Lemma 5.2. After GST, if an honest replica enters some round r at time T , all honest
replicas enter round r by time T + 4∆ except with exp(−Ω(λ)) probability.

Proof. Suppose the earliest honest replica enters round r at time T (after GST). If this honest
replica is a committee replica in round r, it will broadcast TC[r− 1]. Due to synchrony, all

105

honest replicas will receive TC[r − 1] within T + 2∆ time and enter round r. Otherwise,
since there are tH messages in TC[r− 1] sent by committee replicas in round r− 1, at least
tH replicas have entered r − 1 before T −∆, among which at least one is honest except for
probability exp(−Ω(λ)) since f < (1− ϵ)n/3. The honest committee replica in round r − 1

will broadcast TC[r − 2], therefore at T , all honest replicas will enter round r − 1. Then
honest committee replicas in r−1 will broadcast votes before T +2∆. And since there are at
least tH honest committee replicas except with exp(−Ω(λ)) probability, all honest replicas
can collect TC[r − 1] by T + 4∆. QED.

Lemma 5.3. At any point after GST, if the highest QC is QCr, and three consecutive
rounds r+1 ∼ r+3 have honest leaders, then br+1 will be finalized within 16∆ time except
with exp(−Ω(λ)) probability.

Proof. After GST, when QCr is sent by leader r+1, by Lemma 5.2, all honest replicas enter
r + 1 within 4∆. If the leaders of r + 1 ∼ r + 3 are honest, leader r + 1 will propose br+1

extending from the parent of br and all honest replicas are willing to vote. The leader r + 2

can collect QCr+1 except with exp(−Ω(λ)) probability and propose br+2. Similarly leaders
r + 3 can collect enough votes to form QCr+2. Then br+1 is finalized within 3 rounds, each
round costs at most 4∆. QED.

Theorem 5.2 (Liveness). All honest replicas keep finalizing new blocks and valid transac-
tions will be finalized.

Proof. Since leader changes in every round randomly, the probability to elect consecutive
3 honest leaders is > (2/3)3. Whenever a QC is formed and 4 honest leaders are elected
consecutively, by Lemma 5.3, a block will be finalized within a time bound with overwhelming
probability. Thus all honest replicas will keep finalizing new blocks. Honest leaders will add
valid transactions into their proposals, hence valid transactions will be finalized. QED.

5.3.3 Forensic Protocol and Proof of Forensic Support

When f < (1− ϵ)n/3, the safety and liveness of Algorithm 5.1 are proved as above. When
f ≥ (1− ϵ)n/3, it is possible that the safety is violated. In such a case, the following forensic
protocol in Algorithm 5.2 can provide forensic support proved in Theorem 5.3.

Theorem 5.3. When f ≥ (1 − ϵ)n/3, if two honest replicas finalize conflicting blocks, the
protocol in Algorithm 5.1 provides ((1− ϵ)2n/3, 2, ⌈λ/3⌉)-forensic support.

Proof. Suppose two conflicting blocks are finalized by two honest replicas, let br, br′ be the
first directly finalized blocks that are conflicting, w.l.o.g., suppose r ≤ r′.

106

Algorithm 5.2 Forensic protocol for Algorithm 5.1
1: upon receiving conflicting blocks finalized by two honest replicas do
2: query the entire blockchain from the two honest replicas
3: find the first block finalized by consecutive QCs in each chain, denoted by br, br′
4: swap br, br′ if r′ < r ▷ make sure r ≤ r′

5: if r + 2 > r′ then
6: find two QCr′ on each chain
7: return the intersection of two QCr′

8: else
9: query TC[r + 1] from either of the honest replicas

10: if all lockedQC in TC[r + 1] has round < r then
11: find QCr+1 that makes br be committed
12: return the intersection of TC[r + 1] and QCr+1

13: else
14: find block br∗ s.t.

(1) r + 2 ≤ r∗ ≤ r′, and
(2) br′ extends br∗ , and
(3) br conflicts with br∗ , and
(4) r∗ is the smallest round satisfying the above 3 conditions

15: find QC for br∗ , denoted by QCr∗ , return all replicas in QCr∗

Case r + 2 > r′. Culpability. If r ≤ r′ < r + 2, there are two quorums formed in r′, these
two QCr′ intersect in ⌈λ/3⌉ replicas. These replicas should be Byzantine since the protocol
requires a replica to vote for at most one block in a round.
Witnesses. In this case, the culpability proof can be constructed from two QCs generated in
the same round (line 5-7, Algorithm 5.2).

Case r+2 ≤ r′. Culpability. Since br is directly finalized in round r+2 (by QCr+1), it must
be the case that at least tH committee replicas are locked on at least QCr after round r+ 1

(if they are honest), and broadcast their vote with lock to all replicas. Then consider the
first block br∗ (possibly br′) that is conflicting with br and proposed after r + 1. On the one
hand, br∗ must be extended from a block older than br since this is the first conflicting block
proposed after r. On the other hand, only those replicas whose locks are staler than QCr

can vote for br∗. Remember that in round r + 1, at least tH committee replicas broadcast
lock QCr (or higher lock). And for committee replicas in r∗ to vote, they must collect a set
TC[·] consisting of at least tH locks from the committee in every round < r∗. If the lock
of any one of them is still staler than QCr, the intersection (⌈λ/3⌉ replicas) of QCr+1 and
TC[r+ 1] is the set of committee replicas who send incompatible locks hence are Byzantine
(line 10-12, Algorithm 5.2). Otherwise all the committee replicas who vote for br∗ must be
Byzantine (line 13-15, Algorithm 5.2).

107

Witnesses. In this case, there are two possible scenarios. (i) QCr+1 intersects TC[r + 1] in
⌈λ/3⌉ replicas, who are culpable since their votes in QCr+1 and TC[r+1] are incompatible.
(ii) All replicas in QCr∗ (at least tH in total) are Byzantine because they should have
received a TC[·] containing QCr and update their locks to be at least QCr, but they vote for
a conflicting block br∗ extending from a block older than r. These two cases indicate that
with same-round safety violation, the witnesses can detect ⌈λ/3⌉ replicas. If same-round
safety violation does not exist, at least tH culprits can be detected.

QED.

5.3.4 Impossibility for Forensic Support in Absence of Transition Certificate

The previous section shows a player replaceable protocol that has strong forensic support.
In this section, we will show that not all player replaceable protocols have this property even
if they are safe and live. In fact, we will consider a natural protocol in the same vein as was
discussed in the previous section and demonstrate an impossibility of forensic support when
transition certificates are not forwarded.

The protocol is described in Algorithm 5.3 as a diff from Algorithm 5.1. The key differences
are: (1) Leaders and committee members do not need to maintain TC of the last round
in their messages. (2) Replicas do not need to wait until collecting enough locks reported
by committee to enter the next round. (3) The committee only sends votes when a valid
proposal is received.

Intuition for the impossibility. The protocol is modified from two-phase HotStuff [2]
(or Tendermint [16]) with player replaceability. Thus, safety and liveness can be guaranteed
in a similar way with high probability. In terms of forensic support, when safety is violated
within a round, the culprits can still be detected from the intersection of two conflicting
QCs formed in the same round. However, the absence of the TC results in the impossibility
of detection when safety violation happens across rounds, since the behavior of committee
members in one round is not traceable to another round. When f ≥ (1 − ϵ)n/3, suppose
safety is violated such that two conflicting blocks are finalized by two honest replicas. Let
br, br′ be the first directly finalized blocks that are conflicting, w.l.o.g., suppose r < r′. When
r+ 1 < r′, consider the first block br∗ on the same blockchain as br′ (possibly br∗ = br′) that
is proposed after r + 1, br∗ must extend from a block older than br. Since br′ is finalized,
QCr∗ must be formed. Note that QCr+1 contains at least tH committee replicas who are
locked on at least QCr (if they are honest); QCr∗ contains at least tH committee replicas
who vote for br∗ which extends from an older block than br. Denote s = QCr+1 ∩ QCr∗ ,

108

Algorithm 5.3 A player replaceable, partially synchronous SMR protocol without TC
1: tH ← ⌈2λ/3⌉
2: lockedQC← qcgenesis ▷ the lock variable
3: for r = 1, 2, . . . initialize:
4: TC[r]← ∅
5: for curRound← 1, 2, . . . do

▷ At time 0 of curRound
6: if VRFsk(seed||curRound||''leader'') < τ/n then ▷ as the leader of curRound
7: if the number of votes in curRound− 1 for the same block ≥ tH then
8: lockedQC ← QC generated from these Vote messages
9: create block b∗ where b∗.justify← lockedQC; b∗.cmd← commands from clients

10: broadcast ⟨proposal, curRound, b∗⟩
11: m← ∅
12: wait for m′ ← ⟨proposal, curRound, b∗⟩ from a leader whose cryptographic sortition

is valid
13: if (m = ∅) ∨ (m′.vrf < m.vrf) then
14: m← m′ ▷ m is the proposal with the min VRF hash

▷ At time 2∆ of curRound
15: blockHash = ∅
16: if m is not empty and m.b∗ extends from lockedQC.block then
17: ProcessProposal(m) (line 27)
18: blockHash = H(m.b∗)

19: if VRFsk(seed||curRound||''committee'') < λ/n then ▷ as a committee member of
curRound

20: broadcast ⟨Vote, curRound, blockHash⟩
21: while |TC[curRound]| < tH or before 4∆ of curRound do
22: wait for ⟨Vote, curRound, h∗⟩ whose cryptographic sortition is valid

▷ At any time (triggered by receiving a vote)
23: upon receiving ⟨Vote, r, h∗, lockedQC∗⟩ s.t. cryptographic sortition is valid do
24: if sender id has no entry in TC[r] then
25: TC[r]← TC[r] ∪ {(id, lockedQC∗)}
26: lockedQC← maxround{lockedQC∗, lockedQC} ▷ do not update in case of a draw
27: TC[r − 1]← TC[r − 1] ∪ TC∗[r − 1]

28: procedure ProcessProposal(⟨proposal, r, b∗⟩)
29: lockedQC← maxround{b∗.justify, lockedQC} ▷ do not update in case of a draw
30: TC[r − 1]← TC[r − 1] ∪ TC∗[r − 1]
31: b′ ← b∗.parent, b← b′.parent
32: if b, b′, b∗ are in consecutive rounds then
33: finalize block b (directly) and all blocks before b (indirectly), execute commands

in the finalized blocks

109

Figure 5.2: Two worlds where both QCr+1 and QCr∗ are generated for conflicting blocks.

replicas in s should be held culpable since they violate the voting rules. However, when n is
large, due to player replaceability, in most cases s is empty. The following arguments show
the impossibility of forensic support by analyzing the size of s.

Lemma 5.4. Let br, br′ be the first directly finalized blocks that are conflicting, where
r + 1 < r′. Let br∗ be the first block on the same blockchain as br′ (possibly br∗ = br′) that
is proposed after r + 1. Let s = QCr+1 ∩QCr∗ be the intersection of two QCs. At most |s|
replicas can be held culpable with irrefutable evidence.

Proof. Consider the executions in rounds r+1 and r∗, where a QCr+1 is collected by leader
in r + 2 and a conflicting QCr∗ is formed where r∗ > r + 1. Let s = QCr+1 ∩ QCr∗ ,
p = QCr+1/s and q = QCr∗/s. Let there be four replica partitions P,Q,R and s, s.t.
p ⊂ P, q ⊂ Q, |Q| = |R| ≥ (1 − ϵ)n/3 − |s| and |P | = n − |Q| − |R| − |s|. We present
the following two worlds with different sets of replicas being Byzantine. Notice that when
f ≥ (1 − ϵ)n/3, it is possible that the fraction of Byzantine replicas in committee exceeds
1/3. With larger f , the probability becomes higher.

World 1: Let Q, s be Byzantine replicas in this world. In round r + 1, P, s receive br+1

and update their locks to br if they are honest. The votes from p, s forms QCr+1. Later in
r∗, a leader in R proposes a conflicting block br∗ since it did not receive block br+1. Now
Q, s receive the proposal and the votes from q, s forms QCr∗ . The intersection of QCr+1 and
QCr∗ is s.

World 2: Let R, s be Byzantine replicas in this world. In round r + 1, P, s receive br+1

and update their locks to br if they are honest. The votes from p, s forms QCr+1. Later in
r∗, a Byzantine leader in R proposes a conflicting block br∗ , now Q, s receive the proposal.
Since they did not receive br+1, their locks are staler than br. Once the parent block of br∗
is not older than the locks of q, they will vote for br∗ . The votes from q, s forms QCr∗ .

110

Even with transcripts from all honest replicas, based on QCr+1 and QCr∗ , World 1 and
World 2 are indistinguishable to everyone other than parties in Q and R. The only distinction
is whether these parties received QCr+1. The culpability of s is easy to prove. However, if
the protocol can provide an irrefutable proof of d > |s| culprits, someone in Q or R will be
mistakenly blamed in at least one of the above worlds. QED.

Lemma 5.4 demonstrates that only the replicas in the intersection of two QCs will be
held culpable. Any Byzantine replicas that only vote for one QC can not be distinguished
from honest replicas that hold stale locks since there is no evidence that they have a more
updated lock with a conflicting block. In the following theorem, we further prove that this
number is possibly zero due to player replaceability.

Theorem 5.4. With n replicas, when f ≥ (1−ϵ)n/3, if two honest replicas finalize two con-
flicting blocks, the protocol has no forensic support (d = 0) with non-negligible probability.

Proof. No matter how large f is, we assume there are f ∗ = (1 − ϵ)n/3 Byzantine replicas
plan to equivocate in two rounds. Because if f ∗ < (1− ϵ)n/3, the probability to launch an
attack is exp(−Ω(λ)), which is negligible. And if f ∗ ≥ (1− ϵ)n/3, larger f ∗ can increase the
probability of attack, but will also increase the expected number of Byzantine replicas that
will be detected. So Byzantine replicas can always choose to let f ∗ replicas equivocate.

Now denote X to be the number of replicas who both vote for QCr+1 and QCr∗ . Then we
have

Pr[X = s] =

(
(1− ϵ)n/3

s

)(
λ

n

)2s

·

(
1−

(
λ

n

)2
)((1−ϵ)n/3−s)

(5.1)

Denote the cumulative distribution function as

F (s; (1− ϵ)n/3, (λ/n)2) = Pr[X ≤ s] (5.2)

the probability to detect at least d > 0 culprits is 1−F (d− 1; (1− ϵ)n/3, (λ/n)2). Specially,
the probability that there is no replica in the intersection is Pr[X = 0] ∼ exp(−(λ2/n)),
which can be non-negligible (e.g., λ = O(

√
n log n)).

QED.

The need for transition certificate. Notice that the only difference between Algo-
rithms 5.1 and 5.3 is the use of transition certificates. Intuitively, the key point of forensic
protocol is to detect contradicting behaviors of Byzantine replicas in non-trivial cases (across
rounds), but under the player replaceable setting, the continuity of participation of single

111

replica is lost. Algorithm 5.1 asks all replicas in the committee broadcast TC to announce
how they enter the new round, and the TC connects rounds and committees even if the
committees in different rounds are mutual exclusive.

5.4 AN EXTENSION: RECONFIGURABLE PROTOCOLS

Unlike player replaceable protocols that use VRFs to select players randomly and secretly
in each step, many practical blockchain protocols choose to substitute players in a more
straightforward and flexible way. Protocol designers can appoint a set of players for each
epoch and stipulate a fixed number of rounds/views for an epoch, e.g., 100. In this way,
the protocol changes players in every 100 rounds based on the designer’s appointment. The
designer can also specify a selection based on stakes (e.g., top 10 stakeholders) or performance
(e.g., top 10 network communication contributors). The protocols with the relaxed player
selection, also called reconfigurable protocols, face the same difficulty in providing forensic
support. For instance, DiemBFT [10] adopts a protocol similar to HotStuff and plans to
reconfigure players in epoch switches. Although HotStuff provides strong forensic support,
this property only holds within an epoch, and there is no guarantee of forensic support
during epoch switches. Fortunately, the notion of transition certificates can be adapted to
these protocols and provide strong forensic support during epoch switches. We provide a
framework with requirements for reconfigurable protocols and instruction to provide strong
forensic support.

5.4.1 Forensic Framework

Intuition. When an epoch switch happens, the old set of players is substituted with a
new set of players, and these two sets likely have no intersection. Thus, the forensic anal-
ysis based on quorum intersection does not apply, and Byzantine parties can deliberately
mimic the behavior of honest replicas who suffer long message delays. Byzantine behavior
is indistinguishable from honest behavior, and we may not have any forensic support. This
intuition is similar to §5.3.

Protocol requirements. The protocol should be partially synchronous and tolerate a
maximum of (1 − ϵ)/3 of Byzantine adversaries. It should run in consecutive rounds (or
views) that are counted by a variable curRound, and no round should be skipped. Each
player should maintain protocol’s local states that affect the correct execution and store them
collectively as StatecurRound, where the underscript of curRound indicates this state is at the

112

end of round curRound. If a player misses or corrupts its local StatecurRound, it will deviate
from the protocol and perform Byzantine behavior after curRound. As for communication,
one player can send messages directly to others or broadcast messages. Messages are digitally
signed by the sender, and the private key of the signature should be kept secret. The protocol
should require all the related messages to be received before finalization (e.g., receiving the
entire blockchain that contains QC, as in chained HotStuff/DiemBFT).

Epochs are delimited by rounds. For any round r, public indicator IsEpochStart(r)
and IsEpochEnd(r) should tell if the round is a start or end of an epoch. Notice that the
first epoch start (round 1) is special and we stipulate IsEpochStart(1) = False. Public
function Players(r) should return the list of players of round r which has size λ. Also, this
function should have the same list within an epoch. The list of players should also contain
> 2λ/3 honest players under normal adversary. Notice that if we consider the adversary
that can create a safety violation, the list of players may contain ≤ λ/3 honest players.
Round r of the protocol is executed by players in Players(r), and if the next round r + 1

is a start of a new epoch and Players(r + 1) is a new set of players, an epoch switch and
a reconfiguration happen. The protocol should have strong forensic support by using the
quorum intersection technique within an epoch as the protocols analyzed in Chapter 4. If
a safety attack happens during an epoch switch, the forensic protocol should return two
quorums (but unable to intersect them).

Forensic framework. We denote the original reconfigurable protocol by Π. Algorithm 5.4
shows the forensic framework of Π, and the framework proceeds in rounds. Besides executing
Π, we add the following procedures in each round:

1. If it is the end of an epoch, the old set of players should send local state State to the
new set of players (line 10). This procedure helps the new set of players collect the
correct states; thus, they can run the new epoch without deviating from the protocol.

2. If it is the start of an epoch, the new set of players should collect the state messages
from the old set of players (line 3). The new set of players updates their state according
to the old ones (line 4). This procedure helps the new set of players update their state
to the correct one.

3. If it is the start of an epoch, the new set of players should wait until it collects 2/3 of
the old players’ state (line 5). This procedure forces the new players to continue until
they have the updated state.

4. The new set of players should append the collected states as the transition certificate
to their messages (line 6). (Signature is of the whole message, including the transition
certificate.) All nodes, including players and those who only listen to messages, validate

113

messages about the transition certificate (line 7). This procedure enforces the execution
of the previous procedure.

Algorithm 5.4 A forensic framework for reconfigurable protocol Π
1: for curRound← 1, 2, . . . do
2: if IsEpochStart(curRound) and it belongs to Players(curRound) then
3: collect StatecurRound−1 from Players(curRound − 1) and store them in

TC[curRound]
4: update local State according to received StatecurRound−1

5: wait until |TC[curRound]| ≥ tH , then continue to the next line
6: when execute Π, append TC[curRound] to messages of all rounds in this epoch
7: when execute Π, validate messages for the appended TC[r] (r should be the start of

this epoch): if there are not tH signed Stater−1 from Players(r − 1), discard it
8: execute curRound of Π
9: if IsEpochEnd(curRound) and it belongs to Players(curRound) then

10: send StatecurRound to players in Players(curRound + 1)

Safety and Liveness. The framework does not change the finalization part of the proto-
col. Hence, the safety is untouched. We prove the liveness of the framework.

Theorem 5.5. All honest replicas keep finalizing new blocks and valid transactions will be
finalized.

Proof. The framework only takes time negligible to message delay except that it blocks
the execution in “waiting for enough states to form a transition certificate” (line 5). For
this operation, we need to prove it does not block forever. We prove it using induction on
round number r. Before the waiting, this operation is not executed, and it will not block.
Consider if it blocks at round r, since the original protocol Π has liveness and due to the
induction hypothesis, all players should eventually enter round r − 1, so old set of players
should send their states, and honest ones’ states will arrive at the new set of players. These
messages must be no less than tH . Hence, this operation will not block after these messages
arrive. QED.

5.4.2 Forensic Protocol and Proof of Forensic Support

When f ≥ (1 − ϵ)n/3, it is possible that safety is violated. For this framework, we only
care about the safety violation in an epoch switch, i.e., a part of the adversaries belongs to
the old set of players while another part belongs to the new set. The forensic protocol is

114

Algorithm 5.5 Forensic protocol for Algorithm 5.4
1: upon receiving conflicting blocks finalized by two honest replicas do
2: find the two quorum Q,Q′ (ordered by round) by Π’s forensic protocol

▷ Only care about Q,Q′ across two epochs
3: denote the epoch of Q as the old epoch and that of Q′ as the new epoch. Let the

new epoch starts from round rl
4: query the messages of rounds between that of Q,Q′, from either of the honest replicas
5: specifically, query TC[rl], which is appended to messages by the new players
6: for player p ∈ Q′ do
7: find TC[rl] sent by p, denoted as tc
8: if any of the tH states inside tc are compatible with the messages related to Q

then
9: add p to culprits ▷ tc indicates that p should not do as Q′ does

10: else
11: find the intersection of the incompatible states inside tc and Q
12: add them to culprits ▷ the old players that send incompatible states are

malicious

presented in Algorithm 5.5. We can get two quorums by the original protocol Π’s forensic
protocol, yet we cannot do quorum intersection since their players are reconfigured. We start
with the latter quorum and check for all its members whether the transition certificate sent
by it is compatible with previous messages. If the transition certificate is compatible, then
this member must be malicious. Otherwise, there must be players who sent an incompatible
state, and they must be malicious. We have the formal theorem.

Theorem 5.6. When f ≥ (1 − ϵ)n/3, if two honest replicas finalize conflicting blocks, the
framework in Algorithm 5.4 provides ((1− ϵ)2n/3, 2, ⌈λ/3⌉)-forensic support.

Proof. The forensic protocol of Π should return two quorums Q,Q′ when two honest replicas
finalize conflicting blocks. If they are within an epoch, we are finished with the forensic
protocol of Π. Otherwise, Algorithm 5.5 checks all members in Q′. If it enters line 8, it will
find the member deviated. There are two reasons: (1) The member’s transition certificate
says it should have the correct state at the epoch start. (2) From the epoch start to the
round of this quorum Q′, the member has no reason to corrupt its state (change its state
to an incompatible one), otherwise the forensic protocol Π should have returned an earlier
quorum. If it enters line 12, then all the states in the transition certificate are incompatible
with the first finalized block, which means all players in the intersection of these incompatible
state senders and Q are malicious. This intersection itself has size ⌈λ/3⌉. Also, notice that
we query messages from two honest replicas. Hence, we have ((1− ϵ)2n/3, 2, ⌈λ/3⌉)-forensic
support. QED.

115

5.5 RELATED WORK

Forensic support. The idea of holding misbehaving participants accountable has been
discussed in earlier works [94, 95] for distributed systems in general. For SMR and blockchain,
recent works [46, 97, 98] have discussed finality and accountability and designed their con-
sensus protocols with the focus on accountability. Chapter 4 and a recent work [89] formally
define forensic support for Byzantine Agreement (BA) and analyze it for protocols such as
PBFT [7, 8], HotStuff [2], VABA [3], and Algorand [9, 21]. They show that except Algorand,
the other protocols have forensic support depending on their implementation details. An-
other work [120] introduces the notion of accountable-safety that combines the traditional
safety with the ability to hold Byzantine parties accountable, and shows that there exists a
trade-off between accountable-safety and liveness. In reference [99], they propose the class
of snap-and-chat protocols, which combines a longest chain protocol with a BFT protocol
to provide both availability and finality, and in reference [119] they showe that if the BFT
protocol provides accountable-safety, then it is inherited by the snap-and-chat protocol.

5.6 DISCUSSION

We begin with two observations about the forensic properties for player replaceable pro-
tocols.

First, compared to protocols analyzed in the previous chapter, player replaceable protocols
require fewer replicas to send messages; correspondingly, only fewer replicas (O(λ)) can be
held culpable when there is a safety violation even if the total number of Byzantine replicas
is far larger (O(n)). Whenever forensic support is available, the number of culpable replicas
(d = λ/3 in Algorithm 5.1) is in the same proportion to the quorum size as in the non player
replaceable setting. Moreover, this number is independent of f . When there is no forensic
support, no replica may be held culpable.

Second, qualitatively, the key difficulty with holding replicas culpable is related to po-
tentially having a different set of replicas participating in each round. In BFT protocols,
voting rules stipulate how previous actions impose restrictions on current behavior. Due to
player replaceability, voters’ behaviors across rounds are less traceable, which can be utilized
by adversary to conceal evidence of deviation. Thus, to construct a protocol with strong
forensic support, we need to reconnect across-rounds actions of replicas. In our protocol,
transition certificates serve as the link between the rounds of ancestor blocks and the current
blocks which the forensic protocol can use to identify culpable behavior.

Many practical blockchain systems use reconfigurable protocols in that they want to sub-

116

stitute players infrequently and need more straightforward ways for choosing players. For
these systems and their protocols, our proposal of transaction certificates helps to build
a framework to ensure strong forensic support during the reconfiguration. However, the
proposed framework has strict requirements on protocols; they must proceed in consecutive
rounds without skipping rounds and work with a fixed-size committee. Investigating the
feasibility of implementing this framework on top of extant blockchain systems and the ne-
cessity of the requirements to obtain the desired forensic property will be a good direction
for future work.

117

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff: Bft con-
sensus with linearity and responsiveness,” in Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, 2019, pp. 347–356.

[3] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal validated asyn-
chronous byzantine agreement,” in Proceedings of the 2019 ACM Symposium on Prin-
ciples of Distributed Computing, 2019, pp. 337–346.

[4] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync hotstuff: Simple and
practical synchronous state machine replication,” IACR Cryptology ePrint Archive,
vol. 2019, p. 270, 2019.

[5] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial syn-
chrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp. 288–323, 1988.

[6] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism: Deconstructing
the blockchain to approach physical limits,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’19, 2019, p. 585–
602.

[7] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI, vol. 99,
1999, pp. 173–186.

[8] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,”
ACM Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.

[9] J. Chen and S. Micali, “Algorand: A secure and efficient distributed ledger,” Theoret-
ical Computer Science, vol. 777, pp. 155–183, 2019.

[10] T. D. Team, “State machine replication in the diem blockchain,” https://
developers.diem.com/docs/technical-papers/state-machine-replication-paper/, 2021.
[Online]. Available: https://developers.diem.com/docs/technical-papers/
state-machine-replication-paper/

[11] “Forensic module for diem,” https://github.com/wgr523/libra, 2020. [Online].
Available: https://github.com/wgr523/libra

[12] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,”
J. ACM, vol. 27, no. 2, p. 228–234, apr 1980.

[13] F. B. Schneider, “Implementing fault-tolerant services using the state machine ap-
proach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4, p. 299–319, dec 1990.

118

[14] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM
Transactions on Programming Languages and Systems, vol. 4, no. 3, pp. 382–401,
1982.

[15] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus
with one faulty process,” Journal of the ACM (JACM), vol. 32, no. 2, pp. 374–382,
1985.

[16] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on bft consensus,” arXiv
preprint arXiv:1807.04938, 2018.

[17] M. Ben-Or, “Another advantage of free choice (extended abstract) completely asyn-
chronous agreement protocols,” in Proceedings of the second annual ACM symposium
on Principles of distributed computing, 1983, pp. 27–30.

[18] M. O. Rabin, “Randomized byzantine generals,” in 24th annual symposium on foun-
dations of computer science (sfcs 1983). IEEE, 1983, pp. 403–409.

[19] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous
broadcast protocols,” in Annual International Cryptology Conference. Springer, 2001,
pp. 524–541.

[20] I. Abraham, K. Nayak, L. Ren, and Z. Xiang, “Brief announcement: Byzantine agree-
ment, broadcast and state machine replication with near-optimal good-case latency,”
in 34th International Symposium on Distributed Computing, DISC, 2020.

[21] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling
byzantine agreements for cryptocurrencies,” in Proceedings of the 26th Symposium on
Operating Systems Principles, 2017, pp. 51–68.

[22] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A scalable
blockchain protocol,” in 13th USENIX symposium on networked systems design and
implementation (NSDI 16), 2016, pp. 45–59.

[23] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in bitcoin,”
in International Conference on Financial Cryptography and Data Security. Springer,
2015, pp. 507–527.

[24] H. Yu, I. Nikolic, R. Hou, and P. Saxena, “Ohie: Blockchain scaling made simple,” in
2020 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, may
2020, pp. 112–127.

[25] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long, and A. C.-C. Yao,
“A decentralized blockchain with high throughput and fast confirmation,” in 2020
USENIX Annual Technical Conference (USENIX ATC 20), 2020, pp. 515–528.

[26] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure
proof-of-stake blockchain protocol,” in Annual International Cryptology Conference.
Springer, 2017, pp. 357–388.

119

[27] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 2018, pp. 66–98.

[28] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable consensus and ap-
plications to provably secure proof of stake,” in International Conference on Financial
Cryptography and Data Security. Springer, 2019, pp. 23–41.

[29] V. Buterin, “Ethereum whitepaper,” https://ethereum.org/en/whitepaper/, 2013.

[30] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al., “Hyperledger fabric: a
distributed operating system for permissioned blockchains,” in Proceedings of the Thir-
teenth EuroSys Conference, 2018, pp. 1–15.

[31] G. Fanti, L. Kogan, S. Oh, K. Ruan, P. Viswanath, and G. Wang, “Compounding of
wealth in proof-of-stake cryptocurrencies,” in International Conference on Financial
Cryptography and Data Security, 2019, pp. 42–61.

[32] “Bitcoin energy consumption index,” 2018, https://digiconomist.net/BITCOIN-
ENERGY-CONSUMPTION.

[33] N. L. Johnson and S. Kotz, Urn models and their application: an approach to modern
discrete probability theory. Wiley New York, 1977, vol. 77.

[34] H. Mahmoud, Pólya urn models. Chapman and Hall/CRC, 2008.

[35] G. Rammeloo, “The economics of the proof of stake consen-
sus algorithm,” Medium, 2017, https://medium.com/@gertrammeloo/
the-economics-of-the-proof-of-stake-consensus-algorithm-e28adf63e9db.

[36] moh_man, “How does pos stake concept deal with rich becoming richer issue?” Red-
dit, 2017, https://www.reddit.com/r/ethereum/comments/6x0xv8/how_does_pos_
stake_concept_deal_with_rich/.

[37] Trustnodes.com, ““proof of work is the rich get richer squared” says vi-
talik buterin,” Trustnodes, 2018, https://www.trustnodes.com/2018/07/10/
proof-work-rich-get-richer-squared-says-vitalik-buterin.

[38] P. Gaži, A. Kiayias, and A. Russell, “Stake-bleeding attacks on proof-of-stake
blockchains,” in 2018 Crypto Valley Conference on Blockchain Technology (CVCBT).
IEEE, 2018, pp. 85–92.

[39] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden, “Incentive compatibility
of bitcoin mining pool reward functions,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 477–498.

[40] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” Com-
munications of the ACM, vol. 61, no. 7, pp. 95–102, 2018.

120

[41] L. Brünjes, A. Kiayias, E. Koutsoupias, and A.-P. Stouka, “Reward sharing schemes for
stake pools,” in 2020 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2020, pp. 256–275.

[42] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Proceedings of the ACM
Symposium on Principles of Distributed Computing. ACM, 2017, pp. 315–324.

[43] J. Earls, “The missing explanation of proof of stake version 3,” 2017, http://earlz.net/
view/2017/07/27/1904/the-missing-explanation-of-proof-of-stake-version.

[44] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs of stake.” IACR
Cryptology ePrint Archive, vol. 2016, p. 919, 2016.

[45] E. Wiki, “Proof of stake faqs,” https://github.com/ethereum/wiki/wiki/
Proof-of-Stake-FAQs.

[46] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv preprint
arXiv:1710.09437, 2017.

[47] “Controlled supply,” bitcoinwiki, 2018, https://en.bitcoin.it/wiki/Controlled_supply\
#cite_note-2.

[48] “Mining,” Ethereum Wiki, 2018, https://github.com/ethereum/wiki/wiki/Mining.

[49] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol specification,”
Technical report, 2016–1.10. Zerocoin Electric Coin Company, Tech. Rep., 2016.

[50] E. Duffield and D. Diaz, “Dash: A privacycentric cryptocurrency,” Self-published, 2015.

[51] I. Kaiser, “A decentralized private marketplace: Draft 0.1.”

[52] R. Pemantle, “A time-dependent version of pólya’s urn,” Journal of Theoretical Prob-
ability, vol. 3, no. 4, pp. 627–637, 1990.

[53] B. Bambrough, “A bitcoin halvening is two years away – here’s what’ll happen to the
bitcoin price,” Forbes, May 2018.

[54] J. Taylor-Copeland, Coffey vs. Ripple class action complaint, 2018.

[55] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining strategies in
bitcoin,” in International Conference on Financial Cryptography and Data Security.
Springer, 2016, pp. 515–532.

[56] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack,” in Security and Privacy (EuroS&P),
2016 IEEE European Symposium on. IEEE, 2016, pp. 305–320.

[57] G. Fanti, L. Kogan, S. Oh, K. Ruan, P. Viswanath, and G. Wang, “Compounding of
wealth in proof-of-stake cryptocurrencies,” arXiv preprint arXiv:1809.07468, 2018.

121

[58] G. Wang, S. Wang, V. Bagaria, D. Tse, and P. Viswanath, “Prism removes consen-
sus bottleneck for smart contracts,” in 2020 Crypto Valley Conference on Blockchain
Technology (CVCBT), 2020, pp. 68–77.

[59] Optimism. [Online]. Available: https://optimism.io/

[60] ZK-Rollups. [Online]. Available: https://docs.ethhub.io/ethereum-roadmap/
layer-2-scaling/zk-rollups/

[61] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten, “Arbitrum:
Scalable, private smart contracts,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 1353–1370.

[62] L. Yang, V. Bagaria, G. Wang, M. Alizadeh, G. Fanti, D. Tse, , and P. Viswanath,
“Prism: Scaling bitcoin by 10,000 ×,” arXiv:1909.11261, 2019.

[63] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and scalable cryp-
tocurrency protocol.” IACR Cryptology ePrint Archive, vol. 2016, p. 1159, 2016.

[64] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki, A. Pott, S. Qadeer,
D. R. Rain, S. Sezer et al., “Move: A language with programmable resources,” 2019.

[65] My Sql. [Online]. Available: https://www.mysql.com/

[66] PostGres. [Online]. Available: https://www.postgresql.org/

[67] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding concurrency to smart
contracts,” in Proceedings of the ACM Symposium on Principles of Distributed Com-
puting, 2017, pp. 303–312.

[68] P. S. Anjana, S. Kumari, S. Peri, S. Rathor, and A. Somani, “An efficient framework
for optimistic concurrent execution of smart contracts,” in 2019 27th Euromicro In-
ternational Conference on Parallel, Distributed and Network-Based Processing (PDP).
IEEE, 2019, pp. 83–92.

[69] V. Saraph and M. Herlihy, “An empirical study of speculative concurrency in ethereum
smart contracts,” in International Conference on Blockchain Economics, Security and
Protocols, Tokenomics 2019, May 6-7, 2019, Paris, France, ser. OASIcs, vol. 71, 2019.

[70] S. Pang, X. Qi, Z. Zhang, C. Jin, and A. Zhou, “Concurrency protocol aiming
at high performance of execution and replay for smart contracts,” arXiv preprint
arXiv:1905.07169, 2019.

[71] M. Bartoletti, L. Galletta, and M. Murgia, “A true concurrent model of smart contracts
executions,” in Coordination Models and Languages - 22nd IFIP WG 6.1 International
Conference, COORDINATION 2020, vol. 12134. Springer, 2020, pp. 243–260.

[72] Libra, accessed February 16, 2020. [Online]. Available: https://github.com/libra/libra

122

[73] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff: Bft con-
sensus with linearity and responsiveness,” in Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, ser. PODC ’19, 2019, p. 347–356.

[74] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,” White paper,
pp. 1–47, 2017.

[75] Ethereum 2.0 Specifications. [Online]. Available: https://github.com/ethereum/eth2.
0-specs

[76] NEAR Protocol | A sharded, developer-friendly, proof-of-stake public blockchain.
[Online]. Available: https://nearprotocol.com/

[77] Polkadot: Decentralized Web 3.0 Blockchain Interoperability Platform. [Online].
Available: https://polkadot.network/

[78] RocksDB. [Online]. Available: https://rocksdb.org/

[79] rust-rocksdb, accessed February 19, 2020. [Online]. Available: https://github.com/
rust-rocksdb/rust-rocksdb

[80] OpenEthereum, accessed January 30, 2020. [Online]. Available: https://github.com/
openethereum/openethereum

[81] ERC-20 Token Standard. [Online]. Available: https://github.com/ethereum/EIPs/
blob/master/EIPS/eip-20.md

[82] OpenZeppelin Contracts. [Online]. Available: https://github.com/OpenZeppelin/
openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

[83] CryptoKitties GeneScience. [Online]. Available: https://etherscan.io/address/
0xf97e0a5b616dffc913e72455fde9ea8bbe946a2b#code

[84] A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer, “Decentralization in
bitcoin and ethereum networks,” in International Conference on Financial Cryptogra-
phy and Data Security. Springer, 2018, pp. 439–457.

[85] S. Blackshear, Private Communication, 2020.

[86] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-
security signatures,” Journal of cryptographic engineering, vol. 2, no. 2, pp. 77–89,
2012.

[87] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature algo-
rithm (ecdsa),” International journal of information security, vol. 1, no. 1, pp. 36–63,
2001.

[88] Go Ethereum, accessed May 31, 2020. [Online]. Available: https://github.com/
ethereum/go-ethereum

123

[89] P. Sheng, G. Wang, K. Nayak, S. Kannan, and P. Viswanath, “Bft protocol forensics,”
in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS ’21, 2021, pp. 1722–1743.

[90] J. Li and D. Maziéres, “Beyond one-third faulty replicas in byzantine fault tolerant
systems,” in Proceedings of the 4th USENIX conference on Networked systems design
& implementation, 2007, pp. 10–10.

[91] D. Malkhi, K. Nayak, and L. Ren, “Flexible byzantine fault tolerance,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
2019, pp. 1041–1053.

[92] Z. Xiang, D. Malkhi, K. Nayak, and L. Ren, “Strengthened fault tolerance in byzantine
fault tolerant replication,” in 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2021, pp. 205–215.

[93] D. Kane, A. Fackler, A. Gągol, D. Straszak, and V. Zamfir, “Highway: Efficient con-
sensus with flexible finality,” arXiv preprint arXiv:2101.02159, 2021.

[94] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: Practical accountability
for distributed systems,” ACM SIGOPS operating systems review, vol. 41, no. 6, pp.
175–188, 2007.

[95] A. Haeberlen and P. Kuznetsov, “The fault detection problem,” in Proceedings of the
13th International Conference on Principles of Distributed Systems. Springer, 2009,
pp. 99–114.

[96] P. Civit, S. Gilbert, and V. Gramoli, “Polygraph: Accountable byzantine agreement.”
IACR Cryptol. ePrint Arch., vol. 2019, p. 587, 2019.

[97] A. Ranchal-Pedrosa and V. Gramoli, “Blockchain is dead, long live blockchain!
accountable state machine replication for longlasting blockchain,” arXiv preprint
arXiv:2007.10541, 2020.

[98] A. Stewart and E. Kokoris-Kogia, “Grandpa: a byzantine finality gadget,” arXiv
preprint arXiv:2007.01560, 2020.

[99] J. Neu, E. N. Tas, and D. Tse, “Ebb-and-flow protocols: A resolution of the availability-
finality dilemma,” in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 446–465.

[100] Y. Aumann and Y. Lindell, “Security against covert adversaries: Efficient protocols
for realistic adversaries,” in Theory of Cryptography Conference. Springer, 2007, pp.
137–156.

[101] G. Asharov and C. Orlandi, “Calling out cheaters: Covert security with public verifia-
bility,” in International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 2012, pp. 681–698.

124

[102] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for smaller
blockchains,” in International Conference on the Theory and Application of Cryp-
tology and Information Security. Springer, 2018, pp. 435–464.

[103] H. V. Ramasamy and C. Cachin, “Parsimonious asynchronous byzantine-fault-tolerant
atomic broadcast,” in International Conference on Principles of Distributed Systems.
Springer, 2005, pp. 88–102.

[104] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantinople: Practical
asynchronous byzantine agreement using cryptography,” Journal of Cryptology, vol. 18,
no. 3, pp. 219–246, 2005.

[105] S. Micali, “Byzantine agreement, made trivial,” 2018. [Online]. Available:
https://people.csail.mit.edu/silvio

[106] J. Chen, S. Gorbunov, S. Micali, and G. Vlachos, “Algorand agreement: Super fast
and partition resilient byzantine agreement.” IACR Cryptol. ePrint Arch., vol. 2018,
p. 377, 2018.

[107] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in 40th annual
symposium on foundations of computer science (cat. No. 99CB37039). IEEE, 1999,
pp. 120–130.

[108] D. Association, “Diem,” 2020. [Online]. Available: https://github.com/diem/diem

[109] S. Bano, A. Sonnino, A. Chursin, D. Perelman, and D. Malkhi, “Twins: White-glove
approach for bft testing,” arXiv preprint arXiv:2004.10617, 2020.

[110] M. J. Fischer, N. A. Lynch, and M. Merritt, “Easy impossibility proofs for distributed
consensus problems,” Distributed Computing, vol. 1, no. 1, pp. 26–39, 1986.

[111] A. Mostefaoui, H. Moumen, and M. Raynal, “Signature-free asynchronous byzantine
consensus with t< n/3 and o (n2) messages,” in Proceedings of the 2014 ACM sympo-
sium on Principles of distributed computing, 2014, pp. 2–9.

[112] D. Dolev and R. Reischuk, “Bounds on information exchange for byzantine agreement,”
Journal of the ACM (JACM), vol. 32, no. 1, pp. 191–204, 1985.

[113] D. Dolev and H. R. Strong, “Authenticated algorithms for byzantine agreement,” SIAM
Journal on Computing, vol. 12, no. 4, pp. 656–666, 1983.

[114] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren, “Synchronous byzantine
agreement with expected O(1) rounds, expected O(n2) communication, and optimal
resilience,” in International Conference on Financial Cryptography and Data Security.
Springer, 2019, pp. 320–334.

[115] J. Katz and C.-Y. Koo, “On expected constant-round protocols for byzantine agree-
ment,” in Annual International Cryptology Conference. Springer, 2006, pp. 445–462.

125

[116] I. Abraham, K. Nayak, L. Ren, and Z. Xiang, “Good-case latency of byzantine broad-
cast: A complete categorization,” in Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, 2021, pp. 331–341.

[117] I. Abraham, T. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren, and E. Shi, “Com-
munication complexity of byzantine agreement, revisited,” in Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, 2019, pp. 317–326.

[118] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: speculative
byzantine fault tolerance,” in Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, 2007, pp. 45–58.

[119] J. Neu, E. N. Tas, and D. Tse, “Snap-and-chat protocols: System aspects,” arXiv
preprint arXiv:2010.10447, 2020.

[120] J. Neu, E. N. Tas, and D. Tse, “The availability-accountability dilemma and its reso-
lution via accountability gadgets,” in International Conference on Financial Cryptog-
raphy and Data Security, 2022.

126

